skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wardrobe Model for Long Term Re-identification and Appearance Prediction
Long-term surveillance applications often involve having to re-identify individuals over several days or weeks. The task is made even more challenging with the lack of sufficient visibility of the subjects faces. We address this problem by modeling the wardrobe of individuals using discriminative features and labels extracted from their clothing information from video sequences. In contrast to previous person re-id works, we exploit that people typically own a limited amount of clothing and that knowing a person's wardrobe can be used as a soft-biometric to distinguish identities. We a) present a new dataset consisting of more than 70,000 images recorded over 30 days of 25 identities; b) model clothing features using CNNs that minimize intra-garments variations while maximizing inter-garments differences; and c) build a reference wardrobe model that captures each persons set of clothes that can be used for re-id. We show that these models open new perspectives to long-term person re-id problem using clothing information.  more » « less
Award ID(s):
1822190 1266183
PAR ID:
10107290
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Not all people are equally easy to identify: color statistics might be enough for some cases while others might re- quire careful reasoning about high- and low-level details. However, prevailing person re-identification(re-ID) meth- ods use one-size-fits-all high-level embeddings from deep convolutional networks for all cases. This might limit their accuracy on difficult examples or makes them needlessly ex- pensive for the easy ones. To remedy this, we present a new person re-ID model that combines effective embeddings built on multiple convolutional network layers, trained with deep-supervision. On traditional re-ID benchmarks, our method improves substantially over the previous state-of- the-art results on all five datasets that we evaluate on. We then propose two new formulations of the person re- ID problem under resource-constraints, and show how our model can be used to effectively trade off accuracy and computation in the presence of resource constraints. 
    more » « less
  2. Processes evoked by seeing a personally familiar face encompass recognition of visual appearance and activation of social and person knowledge. Whereas visual appearance is the same for all viewers, social and person knowledge may be more idiosyncratic. Using between-subject multivariate decoding of hyperaligned functional magnetic resonance imaging data, we investigated whether representations of personally familiar faces in different parts of the distributed neural system for face perception are shared across individuals who know the same people. We found that the identities of both personally familiar and merely visually familiar faces were decoded accurately across brains in the core system for visual processing, but only the identities of personally familiar faces could be decoded across brains in the extended system for processing nonvisual information associated with faces. Our results show that personal interactions with the same individuals lead to shared neural representations of both the seen and unseen features that distinguish their identities. 
    more » « less
  3. Recent advancements in person recognition have raised concerns about identity privacy leaks. Gait recognition through millimeter-wave radar provides a privacy-centric method. However, it is challenged by lower accuracy due to the sparse data these sensors capture. We are the first to investigate a cross-modal method, IdentityKD, to enhance gait-based person recognition with the assistance of facial data. IdentityKD involves a training process using both gait and facial data, while the inference stage is conducted exclusively with gait data. To effectively transfer facial knowledge to the gait model, we create a composite feature representation using contrastive learning. This method integrates facial and gait features into a unified embedding that captures the unique identityspecific information from both modalities. We employ two distinct contrastive learning losses. One minimizes the distance between embeddings of data pairs from the same person, enhancing intraclass compactness, while the other maximizes the distance between embeddings of data pairs from different individuals, improving inter-class separability. Additionally, we use an identity-wise distillation strategy, which tailors the training process for each individual, ensuring that the model learns to distinguish between different identities more effectively. Our experiments on a dataset of 36 subjects, each providing over 5000 face-gait pairs, demonstrate that IdentityKD improves identity recognition accuracy by 6.5% compared to baseline methods. 
    more » « less
  4. Scientific collections have been built by people. For hundreds of years, people have collected, studied, identified, preserved, documented and curated collection specimens. Understanding who those people are is of interest to historians, but much more can be made of these data by other stakeholders once they have been linked to the people’s identities and their biographies. Knowing who people are helps us attribute work correctly, validate data and understand the scientific contribution of people and institutions. We can evaluate the work they have done, the interests they have, the places they have worked and what they have created from the specimens they have collected. The problem is that all we know about most of the people associated with collections are their names written on specimens. Disambiguating these people is the challenge that this paper addresses. Disambiguation of people often proves difficult in isolation and can result in staff or researchers independently trying to determine the identity of specific individuals over and over again. By sharing biographical data and building an open, collectively maintained dataset with shared knowledge, expertise and resources, it is possible to collectively deduce the identities of individuals, aggregate biographical information for each person, reduce duplication of effort and share the information locally and globally. The authors of this paper aspire to disambiguate all person names efficiently and fully in all their variations across the entirety of the biological sciences, starting with collections. Towards that vision, this paper has three key aims: to improve the linking, validation, enhancement and valorisation of person-related information within and between collections, databases and publications; to suggest good practice for identifying people involved in biological collections; and to promote coordination amongst all stakeholders, including individuals, natural history collections, institutions, learned societies, government agencies and data aggregators. 
    more » « less
  5. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    With the goal of supporting real-time AI-based agents to facilitate student collaboration, as well as to enable educational data-mining of group discussions, multimodal classroom analytics, and social network analysis, we investigate how to identify who-is-where-when in classroom videos. We take a person re-identification ( re-id ) approach, and we explore different methods of improving re-id accuracy in the challenging environments of school classrooms. Our results on a multi-grade classroom (MGC) dataset suggest that (1) fine-tuning off-the-shelf person re-id models such as AGW can deliver sizable accuracy gains (from 70.4\\% to 76.7\\% accuracy); (2) clustering, rather than nearest-neighbor identification, can yield accuracy improvements (76.7\\% to 79.4\\%) of identifying each detected person, especially when structural constraints are imposed; and (3) there is a strong benefit to re-id accuracy in obtaining multiple enrollment images from each student. 
    more » « less