Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper we present AMPNet, an acoustic abnormality detection model deployed at ACV Auctions to automatically identify engine faults of vehicles listed on the ACV Auctions platform. We investigate the problem of engine fault detection and discuss our approach of deep-learning based audio classification on a large-scale automobile dataset collected at ACV Auctions. Specifically, we discuss our data collection pipeline and its challenges, dataset preprocessing and training procedures, and deployment of our trained models into a production setting. We perform empirical evaluations of AMPNet and demonstrate that our framework is able to successfully capture various engine anomalies agnostic of vehicle type. Finally we demonstrate the effectiveness and impact of AMPNet in the real world, specifically showing a 20.85% reduction in vehicle arbitrations on ACV Auctions' live auction platform.more » « less
-
Traditional fingerprint authentication requires the acquisition of data through touch-based specialized sensors. However, due to many hygienic concerns including the global spread of the COVID virus through contact with a surface has led to an increased interest in contactless fingerprint image acquisition methods. Matching fingerprints acquired using contactless imaging against contact-based images brings up the problem of performing cross modal fingerprint matching for identity verification. In this paper, we propose a cost-effective, highly accurate and secure end-to-end contactless fingerprint recognition solution. The proposed framework first segments the finger region from an image scan of the hand using a mobile phone camera. For this purpose, we developed a cross-platform mobile application for fingerprint enrollment, verification, and authentication keeping security, robustness, and accessibility in mind. The segmented finger images go through fingerprint enhancement to highlight discriminative ridge-based features. A novel deep convolutional network is proposed to learn a representation from the enhanced images based on the optimization of various losses. The proposed algorithms for each stage are evaluated on multiple publicly available contactless databases. Our matching accuracy and the associated security employed in the system establishes the strength of the proposed solution framework.more » « less
An official website of the United States government
