skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Freshwater mussels alter fish distributions through habitat modifications at fine spatial scales
Aggregations of freshwater mussels create patches that can benefit other organisms through direct habitat alterations or indirect stimulation of trophic resources via nutrient excretion and biodeposition. Spent shells and the shells of living mussels add complexity to benthic environments by providing shelter from predators and increasing habitat heterogeneity. Combined, these factors can increase primary productivity and macroinvertebrate abundance in patches where mussel biomass is high, providing valuable subsidies for some fishes and influencing their distributions. We performed a 12-wk field experiment to test whether fish distributions within mussel beds were most influenced by the presence of subsidies associated with live mussels or the biogenic habitat of shells. We used remote underwater video recordings to quantify fish occurrences at fifty 0.25-m2 experimental enclosures stocked with either live mussels (2-species assemblages), sham mussels (shells filled with sand), or sediment only. The biomass of algae and benthic macroinvertebrates increased over time but were uninfluenced by treatment. We detected more fish in live mussel and sham treatments than in the sediment-only treatment but found no difference between live mussel and sham treatments. Thus, habitat provided by mussel shells may be the primary benefit to fishes that co-occur with mussels. Increased spatiotemporal overlap between fish and mussels might strengthen ecosystem effects, such as nutrient cycling, and the role of both fish and mussels in freshwater ecosystems  more » « less
Award ID(s):
1457542
PAR ID:
10107381
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Freshwater science
ISSN:
2161-9565
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cross-ecosystem nutrient transfer can enhance coral reef functioning in an otherwise oligotrophic environment. While the influence of seabird-derived nutrients on coral reef organisms is increasingly recognized, how they are integrated into reef food webs remains unclear. Cryptobenthic reef fishes are crucial for energy transfer on coral reefs, and their fast life histories imply that they respond strongly to seabird-derived nutrients. Here, we investigate how variation in nearshore seabird nutrient subsidies affects coral reef fish communities. By comparing fish communities across locations differing in seabird nutrient inputs and using stable isotope analysis, we explore nutrient integration across depth, their influence on cryptobenthic and associated larger reef fishes and investigated the relative reliance of cryptobenthic fishes on seabird-enriched benthic and non-enriched pelagic pathways. We find that, near seabird colonies, cryptobenthic fishes’ diets can transition from pelagic to benthic dominance; cryptobenthic fish communities are larger; herbivores and all feeding groups comprising potential cryptobenthic fish predators have higher biomass. Collectively, our results stress the importance of seabirds in shaping energy pathways and suggest that, even in dynamic, ocean-swept reef systems, cryptobenthic fishes can mobilize seabird subsidies and potentially act as a nutritional bridge to higher trophic levels. 
    more » « less
  2. Abstract Indigenous freshwater mussels (Unionidae) are integral to riverine ecosystems, playing a pivotal role in aquatic food webs and providing ecological services. With populations on the decline worldwide, freshwater mussels are of conservation concern. In this study, we explore the propensity of the invasive Round Goby (Neogobius melanostomus) fish to prey upon indigenous freshwater mussels. First, we conducted lab experiments where Round Gobies were given the opportunity to feed on juvenile unionid mussels and macroinvertebrates, revealing rates and preferences of consumption. Several Round Gobies consumed whole freshwater mussels during these experiments, as confirmed by mussel counts and x-ray images of the fishes. Next, we investigated Round Gobies collected from stream habitats of the French Creek watershed, which is renowned for its unique and rich aquatic biodiversity. We developed a novel DNA metabarcoding method to identify the specific species of mussels consumed by Round Goby and provide a new database of DNA gene sequences for 25 indigenous unionid mussel species. Several of the fishes sampled had consumed indigenous mussels, including the Elktoe (non-endangered), Creeper (non-endangered), Long Solid (state endangered), and Rayed Bean (federally endangered) species. The invasive Round Goby poses a growing threat to unionid mussels, including species of conservation concern. The introduction of the invasive Round Goby to freshwaters of North America is shaping ecosystem transitions within the aquatic critical zone having widespread implications for conservation and management. 
    more » « less
  3. Ecosystem engineers can generate hotspots of ecological structure and function by facilitating the aggregation of both resources and consumers. However, nearly all examples of such engineered hotspots come from long-lived foundation species, such as marine and freshwater mussels, intertidal cordgrasses, and alpine cushion plants, with less attention given to small-bodied, and short-lived taxa. Insects often have rapid life cycles and high population densities and are among the most diverse and ubiquitous animals on earth. Although these taxa have the potential to generate hotspots and heterogeneity comparable to that of foundation species, few studies have examined this possibility. We conducted a mesocosm experiment to examine the degree to which a stream insect ecosystem engineer, the net-spinning caddisfly (Tricoptera:Hydropsychidae), creates hotspots of ecosystem function by facilitating invertebrate community assembly. Our experiment used two treatments: (1) stream benthic habitat with patches of caddisfly engineers present and (2) a control treatment with no caddisflies present. We show that compared to controls, caddisflies increased local resource availability, measured as particulate organic matter (POM) by 43%, ecosystem respiration (ER) by 70%, and invertebrate density, biomass and richness by 96%, 244%, and 72%, respectively. These changes resulted in increased spatial variation of POM by 25%, invertebrate density by 76%, and ER by 29% compared to controls, indicating a strong effect of caddisflies on ecological heterogeneity. We found a positive relationship between invertebrate density and ammonium concentration in the caddisfly treatment, but no such relationship in the control, indicating that either caddisflies themselves or the invertebrate aggregations they create increased nutrient availability. When accounting for the amount of POM, caddisfly treatments increased invertebrate density by 48% and richness by 40% compared to controls, suggesting that caddisflies may also enhance the nutritional quality of resources for the invertebrate assemblage. The caddisfly treatment also increased the rate of ecosystem respiration as a function of increasing POM compared to the control. Our study demonstrates that insect ecosystem engineers can generate heterogeneity by concentrating local resources and consumers, with consequences for carbon and nutrient cycling. 
    more » « less
  4. Abstract Ecosystem engineers can generate hotspots of ecological structure and function by facilitating the aggregation of both resources and consumers. However, nearly all examples of such engineered hotspots come from long‐lived foundation species, such as marine and freshwater mussels, intertidal cordgrasses, and alpine cushion plants, with less attention given to small‐bodied and short‐lived animals. Insects often have rapid life cycles and high population densities and are among the most diverse and ubiquitous animals on earth. Although these taxa have the potential to generate hotspots and heterogeneity comparable to that of foundation species, few studies have examined this possibility. We conducted a mesocosm experiment to examine the degree to which a stream insect ecosystem engineer, the net‐spinning caddisfly (Tricoptera:Hydropsychidae), creates hotspots by facilitating invertebrate community assembly. Our experiment used two treatments: (1) stream benthic habitat with patches of caddisfly engineers present and (2) a control treatment with no caddisflies present. We show that compared to controls, caddisflies increased local resource availability measured as particulate organic matter (POM) by 43%, ecosystem respiration (ER) by 70%, and invertebrate density, biomass, and richness by 96%, 244%, and 72%, respectively. These changes resulted in increased spatial variation of POM by 25%, invertebrate density by 76%, and ER by 29% compared to controls, indicating a strong effect of caddisflies on ecological heterogeneity. We found a positive relationship between invertebrate density and ammonium concentration in the caddisfly treatment, but no such relationship in the control, indicating that either caddisflies themselves or the invertebrate aggregations they create increased nutrient availability. When accounting for the amount of POM, caddisfly treatments increased invertebrate density by 48% and richness by 40% compared to controls, suggesting that caddisflies may also enhance the nutritional quality of resources for the invertebrate assemblage. The caddisfly treatment also increased the rate of ecosystem respiration as a function of increasing POM compared to the control. Our study demonstrates that insect ecosystem engineers can generate heterogeneity by concentrating local resources and consumers, with consequences for carbon and nutrient cycling. 
    more » « less
  5. Freshwater mussels are important indicators of the overall health of their environment but have suffered declines that have been attributed to factors such as habitat degradation, a loss of fish hosts, climate change, and excessive nutrient inputs. The loss of mussel biodiversity can negatively impact freshwater ecosystems such that understanding the mussel’s gut microbiome has been identified as a priority topic for developing conservation strategies. In this study, we determine whether ethanol-stored specimens of freshwater mussels can yield representative information about their gut microbiomes such that changes in the microbiome through time could potentially be determined from museum mussel collections. A short-term preservation experiment using the invasive clam Corbicula fluminea was used to validate the use of ethanol as a method for storing the bivalve microbiome, and the gut microbiomes of nine native mussel species that had been preserved in ethanol for between 2 and 9 years were assessed. We show that ethanol preservation is a valid storage method for bivalve specimens in terms of maintaining an effective sequencing depth and the richness of their gut bacterial assemblages and provide further insight into the gut microbiomes of the invasive clam C. fluminea and nine species of native mussels. From this, we identify a “core” genus of bacteria (Romboutsia) that is potentially common to all freshwater bivalve species studied. These findings support the potential use of ethanol-preserved museum specimens to examine patterns in the gut microbiomes of freshwater mussels over long periods. 
    more » « less