skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence for diffusing atomic oxygen uncovered by separating reactants with a semi-permeable nanocapsule barrier
Ground-state atomic oxygen [O( 3 P)] is an oxidant whose formation in solution was proposed but never proven. Polymer nanocapsules were used to physically separate dibenzothiophene S-oxide (DBTO), a source of O( 3 P), from an O( 3 P)-accepting molecule. Irradiation of polymer nanocapsules loaded with DBTO resulted in oxidation of the O( 3 P)-acceptor placed outside nanocapsules. The results rule out a direct oxygen atom transfer mechanism and are consistent with freely diffusing O( 3 P) as the oxidant.  more » « less
Award ID(s):
1709921 1522525 1316680 1012951
PAR ID:
10107536
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
55
Issue:
12
ISSN:
1359-7345
Page Range / eLocation ID:
1706 to 1709
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A beneficial property of photogenerated reactive oxygen species (ROS) is the capability of oxidant generation within a specific location or organelle inside a cell. Dibenzothiophene S -oxide ( DBTO ), which is known to undergo a photodeoxygenation reaction to generate ground state atomic oxygen [O( 3 P)] upon irradiation, was functionalized to afford localization within the plasma membrane of cells. The photochemistry, as it relates to oxidant generation, was studied and demonstrated that the functionalized DBTO derivatives generated O( 3 P). Irradiation of these lipophilic O( 3 P)-precursors in the presence of LDL and within RAW 264.7 cells afforded several oxidized lipid products (oxLP) in the form of aldehydes. The generation of a 2-hexadecenal ( 2-HDEA ) was markedly increased in irradiations where O( 3 P) was putatively produced. The substantial generation of 2-HDEA is not known to accompany the production of other ROS. These cellular irradiation experiments demonstrate the potential of inducing oxidation with O( 3 P) in cells. 
    more » « less
  2. Abstract Photodeoxygenation of dibenzothiopheneS‐oxide (DBTO) is believed to produce ground‐state atomic oxygen [O(3P)] in solution. Compared with other reactive oxygen species (ROS), O(3P) is a unique oxidant as it is potent and selective. Derivatives of DBTO have been used as O(3P)‐precursors to oxidize variety of molecules, including plasmid DNA, proteins, lipids, thiols, and other small organic molecules. Unfortunately, the photodeoxygenation of DBTO requires ultraviolet irradiation, which is not an ideal wavelength range for biological systems, and has a low quantum yield of approximately 0.003. In this work, benzo[b]naphtho[1,2‐d]selenopheneSe‐oxide, benzo[b]naphtho[2,1‐d]selenopheneSe‐oxide, dinaphtho[2,3‐b:2’,3’‐d]selenopheneSe‐oxide, and perylo[1,12‐b,c,d]selenopheneSe‐oxide were synthesized, and their ability to utilize visible light for generating O(3P) was interrogated. Benzo[b]naphtho[1,2‐d]selenopheneSe‐oxide produces O(3P) upon irradiation centered at 420 nm. Additionally, benzo[b]naphtho[1,2‐d]selenopheneSe‐oxide, benzo[b]naphtho[2,1‐d]selenopheneSe‐oxide, and dinaphtho[2,3‐b:2’,3’‐d]selenopheneSe‐oxide produce O(3P) when irradiated with UVA light and have quantum yields of photodeoxygenation ranging from 0.009 to 0.33. This work increases the utility of photodeoxygenation by extending the range of wavelengths that can be used to generate O(3P) in solution. 
    more » « less
  3. Atmospheric electrical discharges are now known to generate unexpectedly large amounts of the atmosphere’s primary oxidant, hydroxyl (OH), in thunderstorm anvils, where electrical discharges are caused by atmospheric charge separation. The question is “Do other electrical discharges also generate large amounts of oxidants?” In this paper, we demonstrate that corona formed on grounded metal objects under thunderstorms produce extreme amounts of OH, hydroperoxyl (HO 2 ), and ozone (O 3 ). Hundreds of parts per trillion to parts per billion of OH and HO 2 were measured during seven thunderstorms that passed over the rooftop site during an air quality study in Houston, TX in summer 2006. A combination of analysis of these field results and laboratory experiments shows that these extreme oxidant amounts were generated by corona on the inlet of the OH-measuring instrument and that corona are easier to generate on lightning rods than on the inlet. In the laboratory, increasing the electric field increased OH, HO 2 , and O 3 , with 14 times more O 3 generated than OH and HO 2 , which were equal. Calculations show that corona on lightning rods can annually generate OH that is 10–100 times ambient amounts within centimeters of the lightning rod and on high-voltage electrical power lines can generate OH that is 500 times ambient a meter away from the corona. Contrary to current thinking, previously unrecognized corona-generated OH, not corona-generated UV radiation, mostly likely initiates premature degradation of high-voltage polymer insulators. 
    more » « less
  4. Abstract The catalytic oxidative dehydrogenation of propane (ODHP) is a challenging reaction due to facile competing overoxidation to COx. The gaseous disulfur molecule, S2, is isoelectronic with O2and has been shown to act as an alternative, “soft oxidant” for the analogous process (SODHP) over bulk metal sulfide catalysts. However, these bulk catalysts suffer from low surface areas and ill‐defined active sites – issues that might be addressed with a supported catalyst. Here we investigate supported V/Al2O3materials for SODHP. We show that these catalysts are highly selective for propylene, far surpassing the yields of the prior bulk systems. Isolated sulfided vanadium species are found to be more active and selective than crystalline vanadium sulfide. Additionally, we compare the S2and O2oxidants over sulfided and calcined V/Al2O3materials, respectively, and find that the propylene selectivity is enhanced using S2as the oxidant. These results suggest that sulfur is a promising soft oxidant that can be used to achieve high propylene selectivities over supported metal sulfides. 
    more » « less
  5. Abstract A widely applicable approach was developed to synthesize ketones, esters, amides via the oxidative C−C bond cleavage of readily available alkyl aldehydes. Green and abundant molecular oxygen (O2) was used as the oxidant, and base metals (cobalt and copper) were used as the catalysts. This strategy can be extended to the one‐pot synthesis of ketones from primary alcohols and α‐ketoamides from aldehydes. 
    more » « less