null
(Ed.)
The use of alternative oxidants for the oxidative dehydrogenation of propane (ODHP) is a promising strategy to suppress the facile overoxidation to CO x that occurs with O 2 . Gaseous disulfur (S 2 ) represents a thermodynamically “softer” oxidant that has been underexplored and yet offers a potential route to more selective propylene formation. Here we describe a system for sulfur-ODHP (SODHP). We demonstrate that various metal sulfide catalysts generate unique reaction product distributions, and that propylene selectivities as high as 86% can be achieved at 450–550 °C. For a group of 6 metal sulfide catalysts, apparent activation energies for propylene formation range from 72–134 kJ mol −1 and parallel the corresponding catalyst XPS sulfur binding energies, indicating that M–S bond strength plays a key role in SODHP activity. Kinetic data over a sulfided ZrO 2 catalyst indicate a rate law which is first-order in propane and zero-order in sulfur, suggesting that SODHP may occur via a mechanism analogous to the Mars van Krevelen cycle of traditional ODHP. The present results should motivate further studies of SODHP as a route to the selective and efficient oxidative production of propylene.
more »
« less
An official website of the United States government
