skip to main content


Title: Examining How Engineering Educators Produce, Reproduce, or Challenge Meritocracy and Technocracy in Pedagogical Reasoning
Sociologists and historians of science/engineering have documented the salience of meritocracy and technocracy in engineering and engineering education (Cech, 2014; Slaton, 2015; Riley, 2008). Some engineering education scholars have begun to document how technocracy and meritocracy have been mechanisms of marginalization within engineering education (Slaton, 2015; Foor, Walden, & Trytten, 2007; Secules, Gupta, Elby, & Turpen, 2018). Our team has been engaged in the iterative redesign of a pedagogy seminar for engineering peer educators working within a college-level introduction to engineering design course. Using tools of discourse analysis, we analyze how technocratic stances are reproduced or challenged in engineering peer educators’ talk during pedagogy seminar discussions. We study peer educators, in particular, because they are in a unique position to do harm if the ideologies of meritocracy and technocracy aren't challenged. Likewise, they are in a unique position to do good if they actively disrupt these ideologies in the introductory engineering design course. We present empirical examples of engineering peer educators both reproducing and contesting technocratic (and, at times, meritocratic) stances in reasoning about engineering education. We believe that such empirical examples can help engineering educators hone their attention to student thinking in the classroom and help us understand what it might look like to see evidence of growth in students’ reasoning.  more » « less
Award ID(s):
1733649
NSF-PAR ID:
10107616
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASEE annual conference & exposition
ISSN:
2153-5965
Page Range / eLocation ID:
27347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gresalfi, M. ; Horn, I. S. (Ed.)
    Sociologists and historians of science have documented the salience of meritocracy and technocracy in engineering (Cech, 2014; Slaton, 2015; Riley, 2008). Meritocracy is often paired with a technocratic ideology, which distinguishes technical and “soft” skills and assigns more worth to the technical. Scholars have shown how technocracy and meritocracy contribute to marginalization within engineering education (Slaton, 2015; Foor et al., 2007; Secules et al., 2018). Our team has been iteratively redesigning a pedagogy seminar for engineering peer educators to disrupt such forces of marginalization. We study peer educators because they can do harm if these ideologies aren't challenged, and they have the potential to disrupt these ideologies. Using tools from discourse analysis and the ideology-in-pieces framework (Philip, 2011), we analyze how technocratic stances are reproduced or challenged in engineering peer educators’ talk. Such analyses can help others to recognize technocratic reasoning and see some of its negative consequences. 
    more » « less
  2. As the field of engineering faces looming societal issues, it becomes particularly important to foster more “holistic engineers” with systems-thinking skills and an understanding of the macro-ethical impacts of their work (Canny and Bielefeldt, 2015) Macro-ethics here refers to the collective social responsibility of engineers as a profession, as opposed to micro-ethics, which concern activities within the profession (Herkert, 2005). However, college students studying engineering in the United States exhibit a decline in concern for public welfare over the course of their education (Cech, 2014) as well as a tendency to orient to micro-ethical issues over macro-ethical issues (Schiff et al, 2020). Scholars attribute these trends to ideologies pervasive in engineering spaces, such as depoliticization of engineering practice, technocracy, and meritocracy (Cech, 2014; Slaton, 2015). While Cech (2014) argues these status quo ideologies in engineering are maintained by a “culture of disengagement” that decreases interest in public welfare, Radoff et al. (2022) find indications that additional factors contribute to engaged students’ reproduction of such ideologies. They find, for example, instances of students in reproducing dehumanizing narratives regarding low-income communities, despite their enrollment in a voluntary program premised on cultivating socially responsible STEM professionals. This finding suggests that even students who remain “engaged” to some degree can reproduce status quo ideologies which Cech (2014) attributes to disengagement. One explanation as to why a macro-ethically “engaged” student may fail to attend to the social aspects of design follows a deficit narrative: a lack of knowledge or ability. We see this assumption in comparisons of students’ and experts’ design processes, where the areas in which students behave differently than experts are interpreted as areas that require additional instruction on how to behave more like the experts (Atman et al., 2008). This presupposition of students’ lacking knowledge or skills, however, backgrounds contextual or interactional factors. Philip et al. (2018) challenges such assumptions in their analysis of a classroom discussion on the ethics of drone warfare, which exemplifies students’ convergence to American nationalism, but with the framing that this convergence is interactionally created, rather than the result of individual students’ stable, dogmatic beliefs. However, because their analysis is limited to the scope of a single class discussion, the extent to which students’ performance is situated in said class remains unclear. In this paper, we attempt to understand the ways in which students reproduce ideologies dominant in engineering, as well as the situated nature of students’ ideological orientations in collaborative work. We consider a case study focus group from Radoff et al. (2022) where students reasoned through a hypothetical design scenario about a grocery store. We show how, despite many opportunities where problematic status-quo narratives are momentarily challenged, the students generally reject the challenges, not by arguing against them, but by positioning them outside the scope of their work. Further, we show how these moments of rejection are tightly coupled with attempts to emulate the multinational technology company Amazon. Finally, we use additional data to illustrate the situatedness of one student’s performance, and theorize the influence of Amazon as a “strange attractor” in this student’s situated reasoning. 
    more » « less
  3. We describe and analyze our efforts to support Learning Assistants (LAs)—undergraduate peer educators who simultaneously take a 3-credit pedagogy course—in fostering equitable team dynamics and collaboration within a project-based engineering design course. Tonso and others have shown that (a) inequities can “live” in mundane interactions such as those among students within design teams and (b) those inequities both reflect and (re)produce broader cultural patterns and narratives (e.g. Wolfe & Powell, 2009; Tonso, 1996, 2006a, 2006b; McLoughlin, 2005). LAs could be well-positioned to notice and potentially disrupt inequitable patterns of participation within design teams. In this paper, we explore (1) How do LAs notice, diagnose, and consider responding to teamwork troubles within design teams, and (2) What ideological assumptions plausibly contribute to LAs’ sensemaking around their students’ teamwork troubles? To do so, we analyze how the LAs notice and consider responding to issues of equitable teamwork and participation, as exhibited in three related activities: (i) an in-class roleplay, (ii) observing and diagnosing teamwork troubles (TTs) in the engineering design teams, and (iii) imagining possible instructional responses to those troubles, and students’ possible reactions. We articulate three modes of thinking that roughly capture patterns in LAs’ descriptions and diagnoses of, and imagined responses to, the teamwork troubles: individual accountability, where the trouble is seen as caused by individual(s) described as “off task” or “checked out” or demonstrating some level of incompetence; delegation of work, where the trouble was located in the team leader’s inability to delegate tasks effectively to team members, or in the group’s general lack of communication about what tasks need to be completed, who should execute the tasks, and what work other groups in the team were doing; and emergent systems, where trouble was described as a group-level phenomenon emerging from the patterns of interaction amongst group members, contextual features, and larger structural forces. We find that LAs drew on individual accountability and delegation of work to evaluate TTs. Much rarer were ascriptions of TTs to interactional dynamics between teammates. We connected these modes to the underlying ideological assumptions that have consequences for how meritocracy and technocracy (Slaton, 2015; Cech, 2014) play out in an engineering design classroom and serve to ameliorate or reify engineering mindsets (Riley, 2008). The modes are asymmetric, in that emergent systems based interpretations hold more potential for elucidating ongoing social processes, for challenging meritocracy and socio-technical duality, and for seeing power differentials within interpersonal and institutional contexts. We argue for the need to better understand the ideological assumptions underlying how peer-educators—and other instructors—interpret classroom events. 
    more » « less
  4. Many studies show that college engineering students’ sense of ethical and social responsibility declines over the course of their college careers (Cech, 2014; Canny & Bielefeldt, 2015; Schiff et al., 2021). One reason is that many college engineering programs and courses reinforce the social-technical dualism, which treats social and macro-ethical issues as distinct from the technical work more often associated with “real” engineering. Some programs, like the Science, Technology and Society (STS) program at [institution made confidential for review], attempt to challenge this dualism by supporting the integration of social and technical considerations within students’ design work and by asking students to grapple with the complex ethics of their work. However, this program is still embedded within a department, university, and society that subscribes to harmful ideologies such as technocracy, capitalism, and meritocracy, which value efficiency, surveillance, and control. These ideologies and their associated values constrain the imagination for what is possible in design work, for instance, by relying on technological ‘quick fixes’ to address complex social problems or by propping up large corporations as innovators, without adequately grappling with the harm that these corporations might be doing. This cultural reality creates an uphill battle for educators attempting to support engineering students’ sense of social consciousness and ethical responsibility. Thus, this study attempts to understand how engineering students’ imaginations are being constrained by societal structures and ideologies and when do they “break free” from these constraints? In this paper, we present a preliminary analysis of first-year STS students collaboratively reasoning through a simulated design scenario about a small community store facing challenges related to the Covid-19 pandemic (adapted from Gupta, 2017). Using discourse and narrative analysis, we analyzed multiple focus group interviews to identify what we call “co-occurrences,” or ideas that tend to hang together in participants’ reasoning. Examining these co-occurrences provides insight into the variety of ways socio-technical imaginaries play out in students’ design thinking. 
    more » « less
  5. This research paper describes a study of elementary teacher learning in an online graduate program in engineering education for in-service teachers. While the existing research on teachers in engineering focuses on their disciplinary understandings and beliefs (Hsu, Cardella, & Purzer, 2011; Martin, et al., 2015; Nadelson, et al., 2015; Van Haneghan, et al., 2015), there is increasing attention to teachers' pedagogy in engineering (Capobianco, Delisi, & Radloff, 2018). In our work, we study teachers' pedagogical sense-making and reflection, which, we argue, is critical for teaching engineering design. This study takes place in [blinded] program, in which teachers take four graduate courses over fifteen months. The program was designed to help teachers not only learn engineering content, but also shift their thinking and practice to be more responsive to their students. Two courses focus on pedagogy, including what it means to learn engineering and instructional approaches to support this learning. These courses consist of four main elements, in which teachers: 1) Read data-rich engineering education articles to reflect on learning engineering; 2) Participate in online video clubs, looking at classroom videos of students’ engineering and commenting on what they notice; 3) Conduct interviews with learners about the mechanism of a pull-back car; and 4) Plan and teach engineering lessons, collecting and analyzing video from their classrooms. In the context of this program, we ask: what stances do teachers take toward learning and teaching engineering design? What shifts do we observe in their stances? We interviewed teachers at the start of the program and after each course. In addition to reflecting on their learning and teaching, teachers watched videos of students’ engineering and discussed what they saw as relevant for teaching engineering. We informally compared summaries from previous interviews to get a sense of changes in how participants talked about engineering, how they approached teaching engineering, and what they noticed in classroom videos. Through this process, we identified one teacher to focus on for this paper: Alma is a veteran 3rd-5th grade science teacher in a rural, racially-diverse public school in the southeastern region of the US. We then developed content logs of Alma's interviews and identified emergent themes. To refine these themes, we looked for confirming and disconfirming evidence in the interviews and in her coursework in the program. We coded each interview for these themes and developed analytic memos, highlighting where we saw variability and stability in her stances and comparing across interviews to describe shifts in Alma's reasoning. It was at this stage that we narrowed our focus to her stances toward the engineering design process (EDP). In this paper, we describe and illustrate shifts we observed in Alma's reasoning, arguing that she exhibited dramatic shifts in her stances toward teaching and learning the EDP. At the start of the program, she was stable in treating the EDP as a series of linear steps that students and engineers progress through. After engaging and reflecting on her own engineering in the first course, she started to express a more fluid stance when talking more abstractly about the EDP but continued to take it up as a linear process in her classroom teaching. By the end of the program, Alma exhibited a growing stability across contexts in her stance toward the EDP as a fluid set of overlapping practices that students and engineers could engage in. 
    more » « less