skip to main content


Title: An integrated adipose-tissue-on-chip nanoplasmonic biosensing platform for investigating obesity-associated inflammation
Although many advanced biosensing techniques have been proposed for cytokine profiling, there are no clinically available methods that integrate high-resolution immune cell monitoring and in situ multiplexed cytokine detection together in a biomimetic tissue microenvironment. The primary challenge arises due to the lack of suitable label-free sensing techniques and difficulty for sensor integration. In this work, we demonstrated a novel integration of a localized-surface plasmon resonance (LSPR)-based biosensor with a biomimetic microfluidic ‘adipose-tissue-on-chip’ platform for an in situ label-free, high-throughput and multiplexed cytokine secretion analysis of obese adipose tissue. Using our established adipose-tissue-on-chip platform, we were able to monitor the adipose tissue initiation, differentiation, and maturation and simulate the hallmark formation of crown-like structures (CLSs) during pro-inflammatory stimulation. With integrated antibody-conjugated LSPR barcode sensor arrays, our platform enables simultaneous multiplexed measurements of pro-inflammatory (IL-6 and TNF-α) and anti-inflammatory (IL-10 and IL-4) cytokines secreted by the adipocytes and macrophages. As a result, our adipose-tissue-on-chip platform is capable of identifying stage-specific cytokine secretion profiles from a complex milieu during obesity progression, highlighting its potential as a high-throughput preclinical readout for personalized obesity treatment strategies.  more » « less
Award ID(s):
1701322 1701363
NSF-PAR ID:
10107732
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Lab on a Chip
Volume:
18
Issue:
23
ISSN:
1473-0197
Page Range / eLocation ID:
3550 to 3560
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantitative and dynamic analyses of immune cell secretory cytokines are essential for precise determination and characterization of the “immune phenotype” of patients for clinical diagnosis and treatment of immune-related diseases. Although multiple methods including the enzyme-linked immunosorbent assay (ELISA) have been applied for cytokine detection, such measurements remain very challenging in real-time, high-throughput, and high-sensitivity immune cell analysis. In this paper, we report a highly integrated microfluidic device that allows for on-chip isolation, culture, and stimulation, as well as sensitive and dynamic cytokine profiling of immune cells. Such a microfluidic sensing chip is integrated with cytometric fluorescent microbeads for real-time and multiplexed monitoring of immune cell cytokine secretion dynamics, consuming a relatively small extracted sample volume (160 nl) without interrupting the immune cell culture. Furthermore, it is integrated with a Taylor dispersion-based mixing unit in each detection chamber that shortens the immunoassay period down to less than 30 minutes. We demonstrate the profiling of multiple pro-inflammatory cytokine secretions ( e.g. interleukin-6, interleukin-8, and tumor necrosis factors) of human peripheral blood mononuclear cells (PBMCs) with a sensitivity of 20 pg ml −1 and a sample volume of 160 nl per detection. Further applications of this automated, rapid, and high-throughput microfluidic immunophenotyping platform can help unleash the mechanisms of systemic immune responses, and enable efficient assessments of the pathologic immune status for clinical diagnosis and immune therapy. 
    more » « less
  2. The immunopathology of chlamydial diseases is exacerbated by a broad-spectrum of inflammatory mediators, which we reported are inhibited by IL-10 in macrophages. However, the chlamydial protein moiety that induces the inflammatory mediators and the mechanisms by which IL-10 inhibits them are unknown. We hypothesized that Chlamydia major outer membrane protein (MOMP) mediates its disease pathogenesis, and the suppressor of cytokine signaling (SOCS)1 and SOCS3 proteins are mediators of the IL-10 inhibitory actions. Our hypothesis was tested by exposing mouse J774 macrophages to chlamydial stimulants (live Chlamydia muridarum and MOMP) with and without IL-10. MOMP significantly induced several inflammatory mediators (IL-6, IL-12p40, CCL5, CXCL10), which were dose-dependently inhibited by IL-10. Chlamydial stimulants induced the mRNA gene transcripts and protein expression of SOCS1 and SOCS3, with more SOCS3 expression. Notably, IL-10 reciprocally regulated their expression by reducing SOCS1 and increasing SOCS3. Specific inhibitions of MAPK pathways revealed that p38, JNK, and MEK1/2 are required for inducing inflammatory mediators as well as SOCS1 and SOCS3. Chlamydial stimulants triggered an M1 pro-inflammatory phenotype evidently by an enhanced nos2 (M1 marker) expression, which was skewed by IL-10 towards a more M2 anti-inflammatory phenotype by the increased expression of mrc1 and arg1 (M2 markers) and the reduced SOCS1/SOCS3 ratios. Neutralization of endogenously produced IL-10 augmented the secretion of inflammatory mediators, reduced SOCS3 expression, and skewed the chlamydial M1 to an M2 phenotype. Inhibition of proteasome degradation increased TNF but decreased IL-10, CCL5, and CXCL10 secretion by suppressing SOCS1 and SOCS3 expressions and dysregulating their STAT1 and STAT3 transcription factors. Our data show that SOCS1 and SOCS3 are regulators of IL-10 inhibitory actions, and underscore SOCS proteins as therapeutic targets for IL-10 control of inflammation for Chlamydia and other bacterial inflammatory diseases. 
    more » « less
  3. Abstract

    Diet‐induced obesity is associated with impaired B‐cell‐driven humoral immunity, which coincides with chronic inflammation and has consequences for responses to infections and vaccinations. Key nutritional, cellular, and molecular mechanisms by which obesity may impair aspects of humoral immunity such as B cell development, class switch recombination, and formation of long‐lived antibody secreting cells are reviewed. A key theme to emerge is the central role of white adipose tissue on the formation and function of pro‐inflammatory B cell subsets that exacerbate insulin resistance. The underlying role of select hormones such as leptin is highlighted, which may be driving the formation of pro‐inflammatory B cells in the absence of antigen stimulation. This review also extensively covers the regulatory role of lipid metabolites such as prostaglandins and specialized pro‐resolving mediators (SPMs) that are synthesized from polyunsaturated fatty acids. Notably, SPM biosynthesis is impaired in obesity and contributes toward impaired antibody production. Future directions for research, including avenues for therapeutic intervention, are included.

     
    more » « less
  4. Abstract Extracellular matrix (ECM) in the human tissue contains vesicles, which are defined as matrix‐bound nanovesicles (MBVs). MBVs serve as one of the functional components in ECM, recapitulating part of the regulatory roles and in vivo microenvironment. In this study, extracellular vesicles from culture supernatants (SuEVs) and MBVs are isolated from the conditioned medium or ECM, respectively, of 3D human mesenchymal stem cells. Nanoparticle tracking analysis shows that MBVs are smaller than SuEVs (100–150 nm). Transmission electron microscopy captures the typical cup shape morphology for both SuEVs and MBVs. Western blot reveals that MBVs have low detection of some SuEV markers such as syntenin‐1. miRNA analysis of MBVs shows that 3D microenvironment enhances the expression of miRNAs such as miR‐19a and miR‐21. In vitro functional analysis shows that MBVs can facilitate human pluripotent stem cell‐derived forebrain organoid recovery after starvation and promote high passage fibroblast proliferation. In macrophage polarization, 2D MBVs tend to suppress the pro‐inflammatory cytokine IL‐12 β , while 3D MBVs tend to enhance the anti‐inflammatory cytokine IL‐10. This study has the significance in advancing the understanding of the bio‐interface of nanovesicles with human tissue and the design of cell‐free therapy for treating neurological disorders such as ischemic stroke. 
    more » « less
  5. Abstract

    Psoriasis is an immune‐mediated chronic inflammatory skin disease. Although its pathogenesis is not fully understood, Th17 cells and the cytokines they produce, such as IL‐17, IL‐22 and IL‐23, play critical roles in the pathogenesis of psoriasis. Evidence has demonstrated that psoriasis has some common features, including immune responses (due to Th17 cells) and inflammatory cytokine profiles, with systematic diseases including inflammatory bowel diseases (IBDs) and obesity. Recently, studies have demonstrated that the gut microbiota plays a crucial role in host homoeostasis and immune response, particular in Th17 cells, but the role of the gut microbiota in psoriasis remains unclear. To study the relationship between gut microbiota and psoriasis, we analysed microbiota profiles in psoriasis using a 16S rDNA sequencing platform, and we found that the abundance ofAkkermansia muciniphilawas significantly reduced in patients with psoriasis.A. muciniphilais believed to have an important function in the pathogenesis of IBD and obesity; therefore,A. muciniphila, which is an indicator of health status, may be a key node for psoriasis as well as IBD and obesity. Taken together, our study identified that gut microbiota signature and function are significantly altered in the gut of patients with psoriasis, which provides a novel angle to understanding the pathogenesis of psoriasis.

     
    more » « less