skip to main content


Title: Engineering Extracellular Matrix‐Bound Nanovesicles Secreted by Three‐Dimensional Human Mesenchymal Stem Cells
Abstract Extracellular matrix (ECM) in the human tissue contains vesicles, which are defined as matrix‐bound nanovesicles (MBVs). MBVs serve as one of the functional components in ECM, recapitulating part of the regulatory roles and in vivo microenvironment. In this study, extracellular vesicles from culture supernatants (SuEVs) and MBVs are isolated from the conditioned medium or ECM, respectively, of 3D human mesenchymal stem cells. Nanoparticle tracking analysis shows that MBVs are smaller than SuEVs (100–150 nm). Transmission electron microscopy captures the typical cup shape morphology for both SuEVs and MBVs. Western blot reveals that MBVs have low detection of some SuEV markers such as syntenin‐1. miRNA analysis of MBVs shows that 3D microenvironment enhances the expression of miRNAs such as miR‐19a and miR‐21. In vitro functional analysis shows that MBVs can facilitate human pluripotent stem cell‐derived forebrain organoid recovery after starvation and promote high passage fibroblast proliferation. In macrophage polarization, 2D MBVs tend to suppress the pro‐inflammatory cytokine IL‐12 β , while 3D MBVs tend to enhance the anti‐inflammatory cytokine IL‐10. This study has the significance in advancing the understanding of the bio‐interface of nanovesicles with human tissue and the design of cell‐free therapy for treating neurological disorders such as ischemic stroke.  more » « less
Award ID(s):
2017869
PAR ID:
10459065
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Advanced Healthcare Materials
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Abstract

    In viral infections, natural killer (NK) cells exhibit anti‐viral activity by inducing apoptosis in infected host cells and impeding viral replication through heightened cytokine release. Extracellular vesicles derived from NK cells (NK‐EVs) also contain the membrane composition, homing capabilities, and cargo that enable anti‐viral activity. These characteristics, and their biocompatibility and low immunogenicity, give NK‐EVs the potential to be a viable therapeutic platform. This study characterizes the size, EV‐specific protein expression, cell internalization, biocompatibility, and anti‐viral miRNA cargo to evaluate the anti‐viral properties of NK‐EVs. After 48 h of NK‐EV incubation in inflamed A549 lung epithelial cells, or conditions that mimic lung viral infections such as during COVID‐19, cells treated with NK‐EVs exhibit upregulated anti‐viral miRNA cargo (miR‐27a, miR‐27b, miR‐369‐3p, miR‐491‐5p) compared to the non‐treated controls and cells treated with control EVs derived from lung epithelial cells. Additionally, NK‐EVs effectively reduce expression of viral RNA and pro‐inflammatory cytokine (TNF‐α, IL‐8) levels in SARS‐CoV‐2 infected Vero E6 kidney epithelial cells and in infected mice without causing tissue damage while significantly decreasing pro‐inflammatory cytokine compared to non‐treated controls. Herein, this work elucidates the potential of NK‐EVs as safe, anti‐viral nanomaterials, offering a promising alternative to conventional NK cell and anti‐viral therapies.

     
    more » « less
  3. Abstract

    Central nervous system (CNS) injuries are often debilitating, and most currently have no cure. This is due to the formation of a neuroinhibitory microenvironment at injury sites, which includes neuroinflammatory signaling and non‐permissive extracellular matrix (ECM) components. To address this challenge, a viscous interfacial self‐assembly approach, to generate a bioinspired hybrid 3D porous nanoscaffold platform for delivering anti‐inflammatory molecules and establish a favorable 3D‐ECM environment for the effective suppression of the neuroinhibitory microenvironment, is developed. By tailoring the structural and biochemical properties of the 3D porous nanoscaffold, enhanced axonal growth from the dual‐targeting therapeutic strategy in a human induced pluripotent stem cell (hiPSC)‐based in vitro model of neuroinflammation is demonstrated. Moreover, nanoscaffold‐based approaches promote significant axonal growth and functional recovery in vivo in a spinal cord injury model through a unique mechanism of anti‐inflammation‐based fibrotic scar reduction. Given the critical role of neuroinflammation and ECM microenvironments in neuroinhibitory signaling, the developed nanobiomaterial‐based therapeutic intervention may pave a new road for treating CNS injuries.

     
    more » « less
  4. null (Ed.)
    Cells in vivo generate mechanical traction on the surrounding 3D extracellular matrix (ECM) and neighboring cells. Such traction and biochemical cues may remodel the matrix, e.g., increase stiffness, which, in turn, influences cell functions and forces. This dynamic reciprocity mediates development and tumorigenesis. Currently, there is no method available to directly quantify single-cell forces and matrix remodeling in 3D. Here, we introduce a method to fulfill this long-standing need. We developed a high-resolution microfabricated sensor that hosts a 3D cell-ECM tissue formed by self-assembly. This sensor measures cell forces and tissue stiffness and can apply mechanical stimulation to the tissue. We measured single and multicellular force dynamics of fibroblasts (3T3), human colon (FET) and lung (A549) cancer cells, and cancer-associated fibroblasts (CAF05) with 1-nN resolution. Single cells show notable force fluctuations in 3D. FET/CAF coculture system, mimicking cancer tumor microenvironment, increased tissue stiffness by three times within 24 hours. 
    more » « less
  5. Abstract

    Developing biomimetic cartilaginous tissues that support locomotion while maintaining chondrogenic behavior is a major challenge in the tissue engineering field. Specifically, while locomotive forces demand tissues with strong mechanical properties, chondrogenesis requires a soft microenvironment. To address this challenge, 3D cartilage‐like tissue is fabricated using two biomaterials with different mechanical properties: a hard biomaterial to reflect the macromechanical properties of native cartilage, and a soft biomaterial to create a chondrogenic microenvironment. To this end, a bath composed of an interpenetrating polymer network (IPN) of polyethylene glycol (PEG) and alginate hydrogel (MPa order compressive modulus) is developed as an extracellular matrix (ECM) with self‐healing properties. Within this bath supplemented with thrombin, human mesenchymal stem cell (hMSC) spheroids embedded in fibrinogen are 3D bioprinted, creating a soft microenvironment composed of fibrin (kPa order compressive modulus) that simulate cartilage's pericellular matrix and allow a fast diffusion of nutrients. The bioprinted hMSC spheroids present high viability and chondrogenic‐like behavior without adversely affecting the macromechanical properties of the tissue. Therefore, the ability to locally bioprint a soft and cell stimulating biomaterial inside of a mechanically robust hydrogel is demonstrated, thereby uncoupling the micro‐ and macromechanical properties of the 3D printed tissues such as cartilage.

     
    more » « less