skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Use of Theory in Computing Education Research
A primary goal of computing education research is to discover designs that produce better learning of computing. In this pursuit, we have increasingly drawn upon theories from learning science and education research, recognizing the potential benefits of optimizing our search for better designs by leveraging the predictions of general theories of learning. In this paper, we contribute an argument that theory can also inhibit our community's search for better designs. We present three inhibitions: 1) our desire to both advance explanatory theory and advance design splits our attention, which prevents us from excelling at both; 2) our emphasis on applying and refining general theories of learning is done at the expense of domain-specific theories of computer science knowledge, and 3) our use of theory as a critical lens in peer review prevents the publication of designs that may accelerate design progress. We present several recommendations for how to improve our use of theory, viewing it as just one of many sources of design insight in pursuit of improving learning of computing.  more » « less
Award ID(s):
1735123
PAR ID:
10107742
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ACM International Computing Education Research Conference
Page Range / eLocation ID:
31 to 39
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For many decades, educational communities, including computing education, have debated the value of telling students what they need to know (i.e., direct instruction) compared to guiding them to construct knowledge themselves (i.e., constructivism). Comparisons of these two instructional approaches have inconsistent results. Direct instruction can be more efficient for short-term performance but worse for retention and transfer. Constructivism can produce better retention and transfer, but this outcome is unreliable. To contribute to this debate, we propose a new theory to better explain these research results. Our theory, multiple conceptions theory, states that learners develop better conceptual knowledge when they are guided to compare multiple conceptions of a concept during instruction. To examine the validity of this theory, we used this lens to evaluate the literature for eight instructional techniques that guide learners to compare multiple conceptions, four from direct instruction (i.e., test-enhanced learning, erroneous examples, analogical reasoning, and refutation texts) and four from constructivism (i.e., productive failure, ambitious pedagogy, problem-based learning, and inquiry learning). We specifically searched for variations in the techniques that made them more or less successful, the mechanisms responsible, and how those mechanisms promote conceptual knowledge, which is critical for retention and transfer. To make the paper directly applicable to education, we propose instructional design principles based on the mechanisms that we identified. Moreover, we illustrate the theory by examining instructional techniques commonly used in computing education that compare multiple conceptions. Finally, we propose ways in which this theory can advance our instruction in computing and how computing education researchers can advance this general education theory. 
    more » « less
  2. null (Ed.)
    Teachers, schools, districts, states, and technology developers endeavor to personalize learning experiences for students, but definitions of personalized learning (PL) vary and designs often span multiple components. Variability in definition and implementation complicate the study of PL and the ways that designs can leverage student characteristics to reliably achieve targeted learning outcomes. We document the diversity of definitions of PL that guide implementation in educational settings and review relevant educational theories that could inform design and implementation. We then report on a systematic review of empirical studies of personalized learning using PRISMA guidelines. We identified 376 unique studies that investigated one or more PL design features and appraised this corpus to determine (1) who studies personalized learning; (2) with whom, and in what contexts; and (3) with focus on what learner characteristics, instructional design approaches, and learning outcomes. Results suggest that PL research is led by researchers in education, computer science, engineering, and other disciplines, and that the focus of their PL designs differs by the learner characteristics and targeted outcomes they prioritize. We further observed that research tends to proceed without a priori theoretical conceptualization, but also that designs often implicitly align to assumptions posed by extant theories of learning. We propose that a theoretically guided approach to the design and study of PL can organize efforts to evaluate the practice, and forming an explicit theory of change can improve the likelihood that efforts to personalize learning achieve their aims. We propose a theory-guided method for the design of PL and recommend research methods that can parse the effects obtained by individual design features within the “many-to-many-to-many” designs that characterize PL in practice. 
    more » « less
  3. Problem. To investigate and identify promising practices in eq- uitable K-12 and tertiary computer science (CS) education, the capacity for education researchers to conduct this research must be rapidly built globally. Simultaneously, concerns have arisen over the last few years about the quality of research that is being con- ducted and the lack of research that supports teaching al students computing. Research Question. Our research question for our study was: In what ways can existing research standards and practices inform methodologically sound, equity-enabling computing education research? Methodology. We conducted a concept analysis using existing re- search and various standards (e.g. European Educational Research Association, Australian Education Research Organisation, Ameri- can Psychological Association). We then synthesised key features ni the context of equity-focused K-12 computing education research. Findings. We present aset of guidelines for general research design that takes into account best practices across the standards that are infused with equity-enabling research practices. Implications. Our guidelines wil directly impact future equitable computing education research by providing guidance on conducting high-quality research such that the findings can be aggregated and impact future policy with evidence-based results. Because we have crafted these guidelines to be broadly applicable across a variety of settings, we believe that they will be useful to researchers operating in a variety of contexts. 
    more » « less
  4. For some time, scholars who are guided by critical theories and perspectives have called out how white supremacist ideologies and systemic racism work to (re)produce societal inequities and educational injustices across science learning contexts in the United States. Given the sociopolitical nature of society, schooling, and science education, it is important to address the racist and settled history of scientific disciplines and science education. To this end, we take an antiracist stance on science teaching and learning and seek to disrupt forms of systemic racism in science classrooms. Since teachers do much of the daily work of transforming science education for minoritized learners, we advocate for preparing teachers who understand what it means to engage in antiracist, justice-oriented science teaching. In this article, we share our framework for supporting preservice teachers in understanding, developing, and implementing antiracist teaching dispositions and instructional practices. In alignment with other researchers in teacher education who emphasize the importance of anchoring teacher education practice and research in prominent educational theory, we highlight the theories undergirding our approach to antiracist science teaching. We offer considerations for how researchers and science teacher educators can use this framework to transform science teacher education. 
    more » « less
  5. Blikstein, Paulo; Van Aalst, Jan; Kizito, Rita; Brennan, Karen (Ed.)
    This inquiry is guided by a curiosity around the stories that teachers tell about their students, content, and pedagogical approaches focused on data and computational literacies. We present a form of storytelling with theory as we apply theories of syncretism and translanguaging to empirical vignettes about teachers’ sensemaking. We also present a form of storytelling of theory, drawing on teachers’ stories to help us better understand how these theories are related to each other. We bring two teachers’ stories into conversation: one from the Writing Data Stories (WDS) project and the other from the Participating in Literacies and Computer Science (PiLa-CS) project. Both projects utilized translanguaging and syncretism in their conceptions and designs, working with teachers to design for expansive forms of data-based and computational literacies. 
    more » « less