Sufficiently serving computer science students at minority-serving institutions entails systematic communication of the "hidden curriculum"- the unwritten rules and tacit norms of traversing a disciplinary academic space- knowledge that students might learn from those with college-going backgrounds. At Kean University, department-run new student orientation has become a mechanism for integrating new students into the institution and the computer science department's community. The course addressed what Kezar and Holcombe call "Elements of STEM student success," or the needs of students at the intersection of first-generation familial experiences and STEM student college newcomers. In this work-in-progress experience report, we use data from retrospective pre-post surveys to show that student participants in the orientation indicate greater intent to engage in high-impact practices, greater confidence in their major choice, and strong identification with their STEM discipline. The authors discuss how systemic, department-level orientation processes at institutions that serve underrepresented student populations can impart academic and career path blueprints that move beyond institutional retention and improve equitable advancements in computing.
more »
« less
Experiences of Computer Science Transfer Students
About half of recent computer and information science graduates attended community college at some point. Prior work on transfer students in general suggests that the transfer process can engage people from underrepresented communities, but can also be academically and socially "shocking". However, we know little about the experiences of transfer students in computer science in particular. We used the Laanan-Transfer Student Questionnaire (L-TSQ) to survey 25 transfer students and 135 native (non-transfer) students and conducted follow-up interviews with 8 transfer students attending a large public 4-year university in a city with significant technology industry presence. We found that while transfer students were more diverse demographically, the support of the university for transfer student orientation tended to mitigate social shocks of transferring. This did not, however, eliminate gaps in academic performance. These findings suggest that there are other non-social factors that influence academic performance that CS programs must support to equitably engage students who transfer.
more »
« less
- Award ID(s):
- 1735123
- PAR ID:
- 10107743
- Date Published:
- Journal Name:
- ACM International Computing Education Research Conference
- Page Range / eLocation ID:
- 115 to 123
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Research has shown that student achievement is influenced by their access to, or possession of, various forms of capital. These forms of capital include financial capital, academic capital (prior academic preparation and access to academic support services), cultural capital (the attitudes, knowledge, and behaviors related to education which students are exposed to by members of their family or community), and social capital (the resources students have access to as a result of being members of groups or networks). For community college students, many with high financial need and the first in their families to go to college (especially those from underrepresented minority groups), developing programs to increase access to these various forms of capital is critical to their success. This paper describes how a small federally designated Hispanic-serving community college has developed a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. Developed through a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant, the program involves a collaboration among STEM faculty, college staff, administrators, student organizations, and partners in industry, four-year institutions, local high schools, and professional organizations. In addition to providing financial support through the scholarships, student access to academic capital is increased through an intensive math review program, tutoring, study groups, supplemental instruction, and research internship opportunities. Access to cultural and social capital is increased by providing scholars with faculty mentors; engaging students with STEM faculty, university researchers, and industry professionals through field trips, summer internships, professional organizations, and student clubs; supporting student and faculty participation at professional conferences, and providing opportunities for students and their families to interact with faculty and staff. The paper details the development of the program, and its impact over the last five years on enhancing the success of STEM students as determined from data on student participation in various program activities, student attitudinal and self-efficacy surveys, and academic performance including persistence, retention, transfer and graduation.more » « less
-
There remains a great deal of research to do on improving the transfer experience for students transitioning from two-year colleges to four-year colleges. In this paper, we describe data collected from interviewing current students at a large Midwestern research university who are members of a cohort program which will be adapted for transfer students to join. This cohort program is designed to give students – intending to major in the natural sciences, and predominantly from underrepresented backgrounds – support in academics, research experiences, and the social experience of integrating into the university. The interview protocol elicited discussion of these students' self-efficacy to complete their science degrees, navigate the academic requirements, and continue in their chosen life paths, specifically drawing out mastery, vicarious learning, and social persuasion experiences. We will discuss how student experience in the cohort program may support developing self-efficacy in the transfer process.more » « less
-
Achieving Change in our Communities for Equity and Student Success (ACCESS) in STEM at the University of Washington Tacoma started as a Track 1 S-STEM program in 2018 and has supported 69 students to date. This year we received Track 2 funding and welcomed our fifth cohort to campus, with funding to support ~32 additional students through 2026. University of Washington Tacoma is an Asian American and Native American Pacific Islander-serving institution (AANAPISI), and we serve a high proportion of racial minority and first generation college students. Our ACCESS scholars are pursuing bachelor’s degrees in Mathematics, Environmental Science, Biomedical Sciences, Information Technology, Computer Science and Systems, Computer Engineering and Systems, Electrical Engineering, Mechanical Engineering, and Civil Engineering, with Computer Science and Engineering representing over 60% of ACCESS scholars to date. First-time college students and first-year transfer students receive full scholarships for their first two years, and partial scholarships for their third and fourth years. The project includes an optional Early Fall Math course to enhance entry into STEM majors, and participants are able to engage in a Research Experience or project-based Introduction to Engineering course in their first year. Coupled with individual faculty mentoring and an on-campus STEM living learning community, the quarterly Success in STEM seminar course helps scholars form a cohesive community through group mentoring, as well as develop a sense of belonging, identity, and empowerment to transform the culture of STEM. This program is distinguished by its focus on pre-STEM majors in their first and second years on campus, and includes mentor training for ~30-40 faculty in teaching and mentoring diverse student populations, thus impacting all students in our majors. Our goal was to evaluate the effectiveness of a program that focuses on the first two years of college and provides financial support, courses to introduce students to research and project-based engineering, and intensive mentoring in increasing retention and academic success for Computer Science and Engineering (CS+E) students, and whether this program helps to close equity gaps for CS+E students who are low socioeconomic status (SES), underrepresented minorities (URMs), female, and/or first generation in college (First Gen) students. We compared our student scholars to a comparison group of students who met eligibility requirements but did not participate in the program. Program scholars had higher first and second year retention, and had significantly higher GPAs. The pandemic resulted in significant social, emotional, and economic stresses for our program scholars, which may have heightened the impact of the ACCESS in STEM program.more » « less
-
Community college transfer students face unique hurdles when they attend a 4-year university. Universities usually cost more than community colleges, 4-year colleges are often located in a different community from where the transfer student lives, and academic expectations are different from community colleges to universities. To help fix the academic achievement gap between students entering as freshman and transfer students, Stony Brook University started the Academic and Social STEM Excellence for Transfer Students (ASSETS) program. ASSETS recruits community college transfer students from low income, marginalized communities and provides them with a scholarship, a 2-week math bootcamp, career counseling, and gives them a natural cohort of students to have a community on campus. Our initial findings show that ASSETS helps the students afford college and relieve a major stress of attending university. After the bootcamp, the students had a group of friends and mentors to advise them on academic and career decisions, help them navigate SBU, and support them during challenges.more » « less
An official website of the United States government

