Abstract: Jury notetaking can be controversial despite evidence suggesting benefits for recall and understanding. Research on note taking has historically focused on the deliberation process. Yet, little research explores the notes themselves. We developed a 10-item coding guide to explore what jurors take notes on (e.g., simple vs. complex evidence) and how they take notes (e.g., gist vs. specific representation). In general, jurors made gist representations of simple and complex information in their notes. This finding is consistent with Fuzzy Trace Theory (Reyna & Brainerd, 1995) and suggests notes may serve as a general memory aid, rather than verbatim representation. Summary: The practice of jury notetaking in the courtroom is often contested. Some states allow it (e.g., Nebraska: State v. Kipf, 1990), while others forbid it (e.g., Louisiana: La. Code of Crim. Proc., Art. 793). Some argue notes may serve as a memory aid, increase juror confidence during deliberation, and help jurors engage in the trial (Hannaford & Munsterman, 2001; Heuer & Penrod, 1988, 1994). Others argue notetaking may distract jurors from listening to evidence, that juror notes may be given undue weight, and that those who took notes may dictate the deliberation process (Dann, Hans, & Kaye, 2005). Whilemore »
Structured Disentangled Representations
Deep latent-variable models learn representations of high-dimensional data in an unsupervised manner. A number of recent efforts have focused on learning representations that disentangle statistically independent axes of variation by introducing modifications to the standard objective function. These approaches generally assume a simple diagonal Gaussian prior and as a result are not able to reliably disentangle discrete factors of variation. We propose a two-level hierarchical objective to control relative degree of statistical independence between blocks of variables and individual variables within blocks. We derive this objective as a generalization of the evidence lower bound, which allows us to explicitly represent the trade-offs between mutual information between data and representation, KL divergence between representation and prior, and coverage of the support of the empirical data distribution. Experiments on a variety of datasets demonstrate that our objective can not only disentangle discrete variables, but that doing so also improves disentanglement of other variables and, importantly, generalization even to unseen combinations of factors
- Award ID(s):
- 1835309
- Publication Date:
- NSF-PAR ID:
- 10107752
- Journal Name:
- Proceedings of Machine Learning Research
- Volume:
- 89
- Page Range or eLocation-ID:
- 2525--2534
- ISSN:
- 2640-3498
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The deep sea (>500 m ocean depth) is the largest global habitat, characterized by cool temperatures, low ambient light, and food-poor conditions relative to shallower waters. Deep-sea teleosts generally grow more slowly than those inhabiting shallow water. However, this is a generalization, and even amongst deep-sea teleosts, there is a broad continuum of growth rates. The importance of potential drivers of growth rate variability amongst deep-sea species, such as temperature, food availability, oxygen concentration, metabolic rate, and phylogeny, have yet to be fully evaluated. We present a meta-analysis in which age and size data were collected for 53 species of teleosts whose collective depth ranges span from surface waters to 4000 m. We calculated growth metrics using both calendar and thermal age, and compared them with environmental, ecological, and phylogenetic variables. Temperature alone explained up to 30% of variation in the von Bertalanffy growth coefficient ( K , yr -1 ), and 21% of the variation in the average annual increase in mass (AIM, %), a metric of growth prior to maturity. After correcting for temperature effects, depth was still a significant driver of growth, explaining up to 20 and 10% of the remaining variation in K and AIM, respectively.more »
-
Decoding auditory stimulus from neural activity can enable neuroprosthetics and direct communication with the brain. Some recent studies have shown successful speech decoding from intracranial recording using deep learning models. However, scarcity of training data leads to low quality speech reconstruction which prevents a complete brain-computer-interface (BCI) application. In this work, we propose a transfer learning approach with a pre-trained GAN to disentangle representation and generation layers for decoding. We first pre-train a generator to produce spectrograms from a representation space using a large corpus of natural speech data. With a small amount of paired data containing the stimulus speech and corresponding ECoG signals, we then transfer it to a bigger network with an encoder attached before, which maps the neural signal to the representation space. To further improve the network generalization ability, we introduce a Gaussian prior distribution regularizer on the latent representation during the transfer phase. With at most 150 training samples for each tested subject, we achieve a state-of-the-art decoding performance. By visualizing the attention mask embedded in the encoder, we observe brain dynamics that are consistent with findings from previous studies investigating dynamics in the superior temporal gyrus (STG), pre-central gyrus (motor) and inferior frontal gyrusmore »
-
Abstract Expert testimony varies in scientific quality and jurors have a difficult time evaluating evidence quality (McAuliff et al., 2009). In the current study, we apply Fuzzy Trace Theory principles, examining whether visual and gist aids help jurors calibrate to the strength of scientific evidence. Additionally we were interested in the role of jurors’ individual differences in scientific reasoning skills in their understanding of case evidence. Contrary to our preregistered hypotheses, there was no effect of evidence condition or gist aid on evidence understanding. However, individual differences between jurors’ numeracy skills predicted evidence understanding. Summary Poor-quality expert evidence is sometimes admitted into court (Smithburn, 2004). Jurors’ calibration to evidence strength varies widely and is not robustly understood. For instance, previous research has established jurors lack understanding of the role of control groups, confounds, and sample sizes in scientific research (McAuliff, Kovera, & Nunez, 2009; Mill, Gray, & Mandel, 1994). Still others have found that jurors can distinguish weak from strong evidence when the evidence is presented alone, yet not when simultaneously presented with case details (Smith, Bull, & Holliday, 2011). This research highlights the need to present evidence to jurors in a way they can understand. Fuzzy Trace Theory purportsmore »
-
Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and block-tridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistor-capacitor-inductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to so-called nite-dierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM state-space representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from themore »