skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1835309

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Degeneracy in biological systems refers to a many-to-one mapping between physical structures and their functional (including psychological) outcomes. Despite the ubiquity of the phenomenon, traditional analytical tools for modeling degeneracy in neuroscience are extremely limited. In this study, we generated synthetic datasets to describe three situations of degeneracy in fMRI data to demonstrate the limitations of the current univariate approach. We describe a novel computational approach for the analysis referred to as neural topographic factor analysis (NTFA). NTFA is designed to capture variations in neural activity across task conditions and participants. The advantage of this discovery-oriented approach is to reveal whether and how experimental trials and participants cluster into task conditions and participant groups. We applied NTFA on simulated data, revealing the appropriate degeneracy assumption in all three situations and demonstrating NTFA’s utility in uncovering degeneracy. Lastly, we discussed the importance of testing degeneracy in fMRI data and the implications of applying NTFA to do so. 
    more » « less
  2. Abstract Traditionally, lust and pride have been considered pleasurable, yet sinful in the West. Conversely, guilt is often considered aversive, yet valuable. These emotions illustrate how evaluations about specific emotions and beliefs about their hedonic properties may often diverge. Evaluations about specific emotions may shape important aspects of emotional life (e.g. in emotion regulation, emotion experience and acquisition of emotion concepts). Yet these evaluations are often understudied in affective neuroscience. Prior work in emotion regulation, affective experience, evaluation/attitudes and decision-making point to anterior prefrontal areas as candidates for supporting evaluative emotion knowledge. Thus, we examined the brain areas associated with evaluative and hedonic emotion knowledge, with a focus on the anterior prefrontal cortex. Participants (N = 25) made evaluative and hedonic ratings about emotion knowledge during functional magnetic resonance imaging (fMRI). We found that greater activity in the medial prefrontal cortex (mPFC), ventromedial PFC (vmPFC) and precuneus was associated with an evaluative (vs hedonic) focus on emotion knowledge. Our results suggest that the mPFC and vmPFC, in particular, may play a role in evaluating discrete emotions. 
    more » « less
  3. Meila, M.; Zhang, T. (Ed.)
    In this paper, we propose conjugate energy-based models (CEBMs), a new class of energy-based models that define a joint density over data and latent variables. The joint density of a CEBM decomposes into an intractable distribution over data and a tractable posterior over latent variables. CEBMs have similar use cases as variational autoencoders, in the sense that they learn an unsupervised mapping from data to latent variables. However, these models omit a generator network, which allows them to learn more flexible notions of similarity between data points. Our experiments demonstrate that conjugate EBMs achieve competitive results in terms of image modelling, predictive power of latent space, and out-of-domain detection on a variety of datasets. 
    more » « less
  4. III, H.D.; Singh, A. (Ed.)
    We develop amortized population Gibbs (APG) samplers, a class of scalable methods that frame structured variational inference as adaptive importance sampling. APG samplers construct high-dimensional proposals by iterating over updates to lower-dimensional blocks of variables. We train each conditional proposal by minimizing the inclusive KL divergence with respect to the conditional posterior. To appropriately account for the size of the input data, we develop a new parameterization in terms of neural sufficient statistics. Experiments show that APG samplers can be used to train highly-structured deep generative models in an unsupervised manner, and achieve substantial improvements in inference accuracy relative to standard autoencoding variational methods. 
    more » « less
  5. Factor analysis methods have been widely used in neuroimaging to transfer high dimensional imaging data into low dimensional, ideally interpretable representations. However, most of these methods overlook the highly nonlinear and complex temporal dynamics of neural processes when factorizing their imaging data. In this paper, we present deep Markov factor analysis (DMFA), a generative model that employs Markov property in a chain of low dimensional temporal embeddings together with spatial inductive assumptions, all related through neural networks, to capture temporal dynamics in functional magnetic resonance imaging (fMRI) data, and tackle their high spatial dimensionality, respectively. Augmented with a discrete latent, DMFA is able to cluster fMRI data in its low dimensional temporal embedding with regard to subject and cognitive state variability, therefore, enables validation of a variety of fMRI-driven neuroscientific hypotheses. Experimental results on both synthetic and real fMRI data demonstrate the capacity of DMFA in revealing interpretable clusters and capturing nonlinear temporal dependencies in these high dimensional imaging data. 
    more » « less
  6. We present Variational Aspect-based Latent Topic Allocation (VALTA), a family of autoencoding topic models that learn aspect-based representations of reviews. VALTA defines a user-item encoder that maps bag-of-words vectors for combined reviews associated with each paired user; item onto structured embeddings, which in turn define per-aspect topic weights. We model individual reviews in a structured manner by inferring an aspect assignment for each sentence in a given review, where the per-aspect topic weights obtained by the user-item encoder serve to define a mixture over topics, conditioned on the aspect. The result is an autoencoding neural topic model for reviews, which can be trained in a fully unsupervised manner to learn topics that are structured into aspects. Experimental evaluation on large number of datasets demonstrates that aspects are interpretable, yield higher coherence scores than non-structured autoencoding topic model variants,; can be utilized to perform aspect-based comparison; genre discovery. 
    more » « less