Abstract This experimental study investigates fault detection and estimation in a continuous stirred‐tank reactor (CSTR) system under closed‐loop feedback control, including an analysis of different manipulative inputs for temperature regulation. A novel fault diagnosis approach is proposed, combining residual signal analysis andT2statistic for real‐time fault detection and size estimation. The closed‐loop system demonstrated robust setpoint tracking and fault tolerance across a range of fault magnitudes. Residual signals serve as direct estimators of fault size, critical for adaptive control, while theT2statistic enhances reliability by identifying deviations from normal behavior with fault‐confidence thresholds. As a step towards fault‐tolerant control, the proposed methodology lays the groundwork for advanced control strategies that can ensure safe and efficient operation of chemical reactor systems.
more »
« less
Adaptive Particle Filtering for Fault Detection in Partially-Observed Boolean Dynamical Systems
We propose a novel methodology for fault detection and diagnosis in partially-observed Boolean dynamical systems (POBDS). These are stochastic, highly nonlinear, and derivative- less systems, rendering difficult the application of classical fault detection and diagnosis methods. The methodology comprises two main approaches. The first addresses the case when the normal mode of operation is known but not the fault modes. It applies an innovations filter (IF) to detect deviations from the nominal normal mode of operation. The second approach is applicable when the set of possible fault models is finite and known, in which case we employ a multiple model adaptive estimation (MMAE) approach based on a likelihood-ratio (LR) statistic. Unknown system parameters are estimated by an adaptive expectation- maximization (EM) algorithm. Particle filtering techniques are used to reduce the computational complexity in the case of systems with large state-spaces. The efficacy of the proposed methodology is demonstrated by numerical experiments with a large gene regulatory network (GRN) with stuck-at faults observed through a single noisy time series of RNA-seq gene expression measurements.
more »
« less
- Award ID(s):
- 1718924
- PAR ID:
- 10107761
- Date Published:
- Journal Name:
- IEEE/ACM Transactions on Computational Biology and Bioinformatics
- ISSN:
- 1545-5963
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents an adaptive functional estimation scheme for the fault detection and diagnosis of nonlinear faults in positive real infinite dimensional systems. The system is assumed to satisfy a positive realness condition and the fault, taking the form of a nonlinear function of the output, is assumed to enter the system at an unknown time. The proposed detection and diagnostic observer utilizes a Reproducing Kernel Hilbert Space as the parameter space and via a Lyapunov redesign approach, the learning scheme for the unknown functional is used for the detection of the fault occurrence, the diagnosis of the fault and finally its accommodation via an adaptive control reconfiguration. Results on parabolic PDEs with either boundary or in-domain actuation and sensing are included.more » « less
-
Abstract The fault diagnosis of bearing in machinery system plays a vital role in ensuring the normal operating performance of system. Machine learning-based fault diagnosis using vibration measurement recently has become a prevailing approach, which aims at identifying the fault through exploring the correlation between the measurement and respective fault. Nevertheless, such correlation will become very complex for the practical scenario where the system is operated under time-varying conditions. To fulfill the reliable bearing fault diagnosis under time-varying condition, this study presents a tailored deep learning model, so called deep long short-term memory (LSTM) network. By fully exploiting the strength of this model in characterizing the temporal dependence of time-series vibration measurement, the negative consequence of time-varying conditions can be minimized, thereby improving the diagnosis performance. The published bearing dataset with various time-varying operating speeds is utilized in case illustrations to validate the effectiveness of proposed methodology.more » « less
-
Abstract Direct inverse analysis of faults in machinery systems such as gears using first principle is intrinsically difficult, owing to the multiple time- and length-scales involved in vibration modeling. As such, data-driven approaches have been the mainstream, whereas supervised trainings are deemed effective. Nevertheless, existing techniques often fall short in their ability to generalize from discrete data labels to the continuous spectrum of possible faults, which is further compounded by various uncertainties. This research proposes an interpretability-enhanced deep learning framework that incorporates Bayesian principles, effectively transforming convolutional neural networks (CNNs) into dynamic predictive models and significantly amplifying their generalizability with more accessible insights of the model's reasoning processes. Our approach is distinguished by a novel implementation of Bayesian inference, enabling the navigation of the probabilistic nuances of gear fault severities. By integrating variational inference into the deep learning architecture, we present a methodology that excels in leveraging limited data labels to reveal insights into both observed and unobserved fault conditions. This approach improves the model's capacity for uncertainty estimation and probabilistic generalization. Experimental validation on a lab-scale gear setup demonstrated the framework's superior performance, achieving nearly 100% accuracy in classifying known fault conditions, even in the presence of significant noise, and maintaining 96.15% accuracy when dealing with unseen fault severities. These results underscore the method's capability in discovering implicit relations between known and unseen faults, facilitating extended fault diagnosis, and effectively managing large degrees of measurement uncertainties.more » « less
-
Faults in components (valves, sensors, etc.) of radiant floor heating and cooling systems affect the efficiency, cooling and heating capacity as well as the reliability of the system. While various fault detection and diagnostic (FDD) methods have been developed and tested for building systems, FDD algorithms for radiant heating and cooling systems have previously not been available. This paper presents an evolving learning-based FDD approach for a radiant floor heating and cooling system based on growing Gaussian mixture regression (GGMR). The experimental space was controlled with a building automation system (BAS) in which the operating conditions can be monitored, and control parameters can be overridden to desired values. Trend data for normal operation and faulty operation were collected. A total of six fault types with different severities in a radiant floor system were emulated through overriding control parameters. An FDD model based on the GGMR approach was developed with training data and the performance of the model was tested for "known" faults that were including in the training and new "unknown" faults that were implemented in the fault testing. The prediction accuracy for each known fault was extremely high with the lowest prediction accuracy of 98% for one of the faults. The algorithm was successful in detecting the new fault as an unknown state before evolving the model and in diagnosing it as a new fault after evolving the model.more » « less
An official website of the United States government

