skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: “Let’s See” – Students Play Vector Unknown, An Inquiry-Oriented Linear Algebra Digital Game
The results we report are a product of the first iteration of a design-based study that uses a game, Vector Unknown, to support students in learning about vector equations in both algebraic and geometric contexts. While playing the game, students employed various numeric and geometric strategies that reflect differing levels of mathematical sophistication. Additionally, results indicate that students developed connections between the algebraic and geometric contexts during gameplay. The game’s design was a collaborative effort between mathematics educators and computer scientists and was based on a framework that integrates inquiry-oriented instruction and inquiry-based learning (IO/IBL), game-based learning (GBL), realistic mathematics education (RME).  more » « less
Award ID(s):
1712524
PAR ID:
10107894
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 22nd Annual Conference on Research in Undergraduate Mathematics Education
Page Range / eLocation ID:
959-965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cook, Samuel; Katz, Brian; Moore-Russo, Deborah (Ed.)
    We present preliminary results of students’ strategies playing Vector Unknown: Echelon Seas [VUES], a 3D videogame intended to support student reasoning about vectors. Our team designed VUES by drawing on theories from Inquiry-Oriented Instruction (IOI), Game-Based Learning [GBL] and Realistic Mathematics Education [RME]. VUES builds from a prior 2D game by giving players vectors with 1, 2, or 3 components, depending on the level. We use codes from our team’s prior analysis (Mauntel et al, 2020) to analyze strategies in the 3D game. Early results show that students develop similar strategies during 3D gameplay as other students developed while playing the 2D game. However, we have also found new strategies that we did not witness with 2D gameplay, requiring us to extend our coding scheme. Further, early results emphasized the need for design changes to the 3D game to better support players’ progress. 
    more » « less
  2. Linear algebra instruction is an essential competency that is necessary for success in multiple engineering disciplines. Research in realistic mathematics education and the development of an empirically tested curriculum in inquiry-oriented practices for teaching linear algebra helps improve the ability of instructors to teach the content via multiple lenses and modes. While there have been good instructional materials and strategies developed to apply inquiry-oriented instruction for linear algebra, students struggle to apply and connect the different modes. Game-based learning provides a platform to creatively include multiple modes and strategies in a fun and engaging manner. In this paper, we present we discuss the addition of game-based learning elements into an existing curriculum that teaches undergraduate linear algebra via an inquiry-oriented pedagogy. The aim of this paper is to discuss the game design strategies used in connecting game based learning to inquiry oriented methods. 
    more » « less
  3. Linear algebra instruction is an essential competency that is necessary for success in multiple engineering disciplines. Research in realistic mathematics education and the development of an empirically tested curriculum in inquiry oriented practices for teaching linear algebra helps improve the ability of instructors to teach the content via multiple lenses and modes. While there have been good instructional materials and strategies developed to apply inquiry oriented instruction for linear algebra, students struggle to apply and connect the different modes. Game based learning provides a platform to creatively include multiple modes and strategies via a fun and engaging manner. In this paper, we present we discuss the addition of game-based learning elements into an existing curriculum that teaches undergraduate linear algebra via an inquiry-oriented pedagogy. The aim of this paper is to discuss the game design strategies used in connecting game based learning to inquiry oriented methods. 
    more » « less
  4. This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students’ (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2) what types of in-game features (i.e. student in-game behaviors, math anxiety, mathematical strategies) were associated with student math knowledge scores. The results indicated that the Random Forest algorithm showed the best performance (i.e. the accuracy of models, error measures) in predicting posttest math knowledge scores among the seven algorithms employed. Out of 37 features included in the model, the validity of the students’ first mathematical transformation was the most predictive of their posttest math knowledge scores. Implications for game learning analytics and supporting students’ algebraic learning are discussed based on the findings. 
    more » « less
  5. Self-regulated learning conducted through metacognitive monitoring and scientific inquiry can be influenced by many factors, such as emotions and motivation, and are necessary skills needed to engage in efficient hypothesis testing during game-based learning. Although many studies have investigated metacognitive monitoring and scientific inquiry skills during game-based learning, few studies have investigated how the sequence of behaviors involved during hypothesis testing with game-based learning differ based on both efficiency level and emotions during gameplay. For this study, we analyzed 59 undergraduate students’ (59% female) metacognitive monitoring and hypothesis testing behavior during learning and gameplay with CRYSTAL ISLAND, a game-based learning environment that teaches students about microbiology. Specifically, we used sequential pattern mining and differential sequence mining to determine if there were sequences of hypothesis testing behaviors and to determine if the frequencies of occurrence of these sequences differed between high or low levels of efficiency at finishing the game and high or low levels of facial expressions of emotions during gameplay. Results revealed that students with low levels of efficiency and high levels of facial expressions of emotions had the most sequences of testing behaviors overall, specifically engaging in more sequences that were indicative of less strategic hypothesis testing behavior than the other students, where students who were more efficient with both levels of emotions demonstrated strategic testing behavior. These results have implications for the strengths of using educational data mining techniques for determining the processes underlying patterns of engaging in self-regulated learning conducted through hypothesis testing as they unfold over time; for training students on how to engage in the self-regulation, scientific inquiry, and emotion regulation processes that can result in efficient gameplay; and for developing adaptive game-based learning environments that foster effective and efficient self-regulation and scientific inquiry during learning. 
    more » « less