skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LongShoT: Long-range Synchronization of Time
Low-Power Wide Area Networks, such as LoRaWAN, are rapidly gaining popularity in the field of wireless sensing and actuation. While LoRaWan is heavily studied in applications and performance, the concept of time has rarely been characterized in such networks. Many applications will require synchronized local clocks with varying levels of precision in order to maintain consistency and coordination in the network. Traditional time synchronization protocols however do not fit LoRaWAN's delay-inherent, low duty cycle, network model and wide-area deployment topology. Meanwhile, relying on GPS for time is not an option for low-power applications. In this paper, we present LongShoT, a time synchronization scheme built on LoRaWan capable of synchronizing device clocks to within 10μs of a reference clock with a single network request. This is achieved by utilizing the deterministic properties of Lo-Ra Wan networks along with hardware- and MAC-level timestamping of packets. LongShoT was implemented on consumer off-the-shelf hardware and evaluated over physically distributed devices using GPS 1PPS as a reference. Our results show that LongShoT achieves an average synchronization error of less than 2μs and compensates oscillator drift to less than 0.1ppm with devices distributed within 4km of a gateway.  more » « less
Award ID(s):
1646235
PAR ID:
10107899
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 18th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)
Page Range / eLocation ID:
289 to 300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Long-range Wide-area Network (LoRaWAN) is an innovative and prominent communication protocol in the domain of Low-power Wide-area Networks (LPWAN), known for its ability to provide long-range communication with low energy consumption. However, the practical implementation of the LoRaWAN protocol, operating at the Medium Access Control layer and specially built to work upon the LoRa physical layer, presents numerous research challenges, including network congestion, interference, optimal resource allocation, collisions, scalability, and security. To mitigate these challenges effectively, the adoption of cutting-edge data-driven technologies such as Deep Learning (DL) and Machine Learning (ML) emerges as a promising approach. Interestingly, very few existing surveys or tutorials have addressed the importance of ML- or DL-based techniques for LoRaWAN. This article provides a comprehensive survey of current LoRaWAN challenges and recent solutions, particularly using DL and ML algorithms. The primary objective of this survey is to stimulate further research efforts to enhance the performance of LoRa networks and facilitate their practical deployments. We begin by emphasizing the characteristics of LoRaWAN compared to other LPWAN technologies and then examine the technical specifications of LoRaWAN that have been released so far, as well as the current research trends. Furthermore, we discuss an overview of the most utilized DL and ML algorithms for overcoming LoRaWAN challenges. We also present an interoperable reference architecture for LoRaWAN and validate its effectiveness using a wide range of applications. Additionally, we shed light on several evolving challenges of LoRa and LoRaWAN for the future digital network, along with possible solutions. Finally, we conclude our discussion by briefly summarizing our work. 
    more » « less
  2. null (Ed.)
    Our world today increasingly relies on the orchestration of digital and physical systems to ensure the successful operations of many complex and critical infrastructures. Simulation-based testbeds are useful tools for engineering those cyber-physical systems and evaluating their efficiency, security, and resilience. In this article, we present a cyber-physical system testing platform combining distributed physical computing and networking hardware and simulation models. A core component is the distributed virtual time system that enables the efficient synchronization of virtual clocks among distributed embedded Linux devices. Virtual clocks also enable high-fidelity experimentation by interrupting real and emulated cyber-physical applications to inject offline simulation data. We design and implement two modes of the distributed virtual time: periodic mode for scheduling repetitive events like sensor device measurements, and dynamic mode for on-demand interrupt-based synchronization. We also analyze the performance of both approaches to synchronization including overhead, accuracy, and error introduced from each approach. By interconnecting the embedded devices’ general purpose IO pins, they can coordinate and synchronize with low overhead, under 50 microseconds for eight processes across four embedded Linux devices. Finally, we demonstrate the usability of our testbed and the differences between both approaches in a power grid control application. 
    more » « less
  3. Sensor networks and IoT systems have been widely deployed in monitoring and controlling system. With its increasing utilization, the functionality and performance of sensor networks and their applications are not the only design aims; security issues in sensor networks attract more and more attentions. Security threats in sensor and its networks could be originated from various sectors: users in cyber space, security-weak protocols, obsolete network infrastructure, low-end physical devices, and global supply chain. In this work, we take one of the emerging applications, advanced manufacturing, as an example to analyze the security challenges in the sensor network. Presentable attacks—hardware Trojan attack, man-in-the-middle attack, jamming attack and replay attack—are examined in the context of sensing nodes deployed in a long-range wide-area network (LoRaWAN) for advanced manufacturing. Moreover, we analyze the challenges of detecting those attacks. 
    more » « less
  4. Phasor measurement units (PMUs) are playing an increasingly important role in wide-area monitoring and the control of power systems. PMUs allow synchronous real-time measurements of voltage, phase angle, and frequency from multiple remote locations in the grid, enabled by their ability to align to global positioning system (GPS) clocks. Given that this ability is vulnerable to GPS spoofing attacks, which have been confirmed easy to launch, in this paper, we propose a distributed real-time wide-area oscillation estimation approach that is robust to GPS spoofing on PMUs and their associated phasor data concentrators. The approach employs the idea of checking update consistency with histories and across distributed nodes and can tolerate up to one third of compromised nodes. It can be implemented in a completely decentralized architecture and in a completely asynchronous way. The effectiveness of the approach is confirmed by numerical simulations of the IEEE 68-bus power system models. 
    more » « less
  5. null (Ed.)
    This paper presents Power Clocks, a kernel-based dy- namic clock management system that reduces active en- ergy use in embedded microcontrollers by changing the clock based on ongoing computation and I/O requests. In Power Clocks, kernel hardware drivers asynchronously re- quest clocks, providing a set of constraints (e.g., maximum speed), which the kernel uses to dynamically choose the most efficient clock. To select a clock, Power Clocks makes use of the observation that though slower clocks use less power and are suited for fixed time I/O operations, faster clocks use less energy per clock tick, making them opti- mal for pure computation. Using Power Clocks, a networked sensing application consumes 27% less energy than the best static clock, and within 3% of an optimal hand-tuned dy- namic clock strategy. Power Clocks provides similar energy savings even when there are multiple applications. 
    more » « less