skip to main content


Title: Distributed Virtual Time-Based Synchronization for Simulation of Cyber-Physical Systems
Our world today increasingly relies on the orchestration of digital and physical systems to ensure the successful operations of many complex and critical infrastructures. Simulation-based testbeds are useful tools for engineering those cyber-physical systems and evaluating their efficiency, security, and resilience. In this article, we present a cyber-physical system testing platform combining distributed physical computing and networking hardware and simulation models. A core component is the distributed virtual time system that enables the efficient synchronization of virtual clocks among distributed embedded Linux devices. Virtual clocks also enable high-fidelity experimentation by interrupting real and emulated cyber-physical applications to inject offline simulation data. We design and implement two modes of the distributed virtual time: periodic mode for scheduling repetitive events like sensor device measurements, and dynamic mode for on-demand interrupt-based synchronization. We also analyze the performance of both approaches to synchronization including overhead, accuracy, and error introduced from each approach. By interconnecting the embedded devices’ general purpose IO pins, they can coordinate and synchronize with low overhead, under 50 microseconds for eight processes across four embedded Linux devices. Finally, we demonstrate the usability of our testbed and the differences between both approaches in a power grid control application.  more » « less
Award ID(s):
1730488
NSF-PAR ID:
10298991
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Modeling and Computer Simulation
Volume:
31
Issue:
2
ISSN:
1049-3301
Page Range / eLocation ID:
1 to 24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article presents a novel hardware-assisted distributed ledger-based solution for simultaneous device and data security in smart healthcare. This article presents a novel architecture that integrates PUF, blockchain, and Tangle for Security-by-Design (SbD) of healthcare cyber–physical systems (H-CPSs). Healthcare systems around the world have undergone massive technological transformation and have seen growing adoption with the advancement of Internet-of-Medical Things (IoMT). The technological transformation of healthcare systems to telemedicine, e-health, connected health, and remote health is being made possible with the sophisticated integration of IoMT with machine learning, big data, artificial intelligence (AI), and other technologies. As healthcare systems are becoming more accessible and advanced, security and privacy have become pivotal for the smooth integration and functioning of various systems in H-CPSs. In this work, we present a novel approach that integrates PUF with IOTA Tangle and blockchain and works by storing the PUF keys of a patient’s Body Area Network (BAN) inside blockchain to access, store, and share globally. Each patient has a network of smart wearables and a gateway to obtain the physiological sensor data securely. To facilitate communication among various stakeholders in healthcare systems, IOTA Tangle’s Masked Authentication Messaging (MAM) communication protocol has been used, which securely enables patients to communicate, share, and store data on Tangle. The MAM channel works in the restricted mode in the proposed architecture, which can be accessed using the patient’s gateway PUF key. Furthermore, the successful verification of PUF enables patients to securely send and share physiological sensor data from various wearable and implantable medical devices embedded with PUF. Finally, healthcare system entities like physicians, hospital admin networks, and remote monitoring systems can securely establish communication with patients using MAM and retrieve the patient’s BAN PUF keys from the blockchain securely. Our experimental analysis shows that the proposed approach successfully integrates three security primitives, PUF, blockchain, and Tangle, providing decentralized access control and security in H-CPS with minimal energy requirements, data storage, and response time. 
    more » « less
  2. Driven by the expanse of Internet of Things (IoT) and Cyber-Physical Systems (CPS), there is an increasing demand to process streams of temporal data on embedded devices with limited energy and power resources. Among all potential solutions, neuromorphic computing with spiking neural networks (SNN) that mimic the behavior of brain, have recently been placed at the forefront. Encoding information into sparse and distributed spike events enables low-power implementations, and the complex spatial temporal dynamics of synapses and neurons enable SNNs to detect temporal pattern. However, most existing hardware SNN implementations use simplified neuron and synapse models ignoring synapse dynamic, which is critical for temporal pattern detection and other applications that require temporal dynamics. To adopt a more realistic synapse model in neuromorphic platform its significant computation overhead must be addressed. In this work, we propose an FPGA-based SNN with biologically realistic neuron and synapse for temporal information processing. An encoding scheme to convert continuous real-valued information into sparse spike events is presented. The event-driven implementation of synapse dynamic model and its hardware design that is optimized to exploit the sparsity are also presented. Finally, we train the SNN on various temporal pattern-learning tasks and evaluate its performance and efficiency as compared to rate-based models and artificial neural networks on different embedded platforms. Experiments show that our work can achieve 10X speed up and 196X gains in energy efficiency compared with GPU. 
    more » « less
  3. Modern high-speed devices (e.g., network adapters, storage, accelerators) use new host interfaces, which expose multiple software queues directly to the device. These multi-queue interfaces allow mutually distrusting applications to access the device without any cross-core interaction, enabling throughput in the order of millions of IOP/s on multicore systems. Unfortunately, while independent device access is scalable, it also introduces a new problem: unfairness. Mechanisms that were used to provide fairness for older devices are no longer tenable in the wake of multi-queue design, and straightforward attempts to re-introduce it would require cross-core synchronization that undermines the scalability for which multiple queues were designed. To address these challenges, we present Multi-Queue Fair Queueing (MQFQ), the first fair, work-conserving scheduler suitable for multi-queue systems. Specifically, we (1) reformulate a classical fair queueing algorithm to accommodate multiqueue designs, and (2) describe a scalable implementation that bounds potential unfairness while minimizing synchronization overhead. Our implementation of MQFQ in Linux 4.15 demonstrates both fairness and high throughput. Evaluation with an NVMe over RDMA fabric (NVMf) device shows that MQFQ can reach up to 3.1 Million IOP/s on a single machine--20× higher than the state-of-the-art Linux Budget Fair Queueing. Compared to a system with no fairness, MQFQ reduces the slowdown caused by an antagonist from 3:78× to 1:33× for the FlashX workload and from 6:57× to 1:03× for the Aerospike workload (2× is considered "fair" slowdown). 
    more » « less
  4. Recently, cyber-physical systems are actively using cloud servers to overcome the limitations of power and processing speed of edge devices. When passwords generated on a client device are evaluated on a server, the information is exposed not only on networks but also on the server-side. To solve this problem, we move the previous lightweight password strength estimation (LPSE) algorithm to a homomorphic encryption (HE) domain. Our proposed method adopts numerical methods to perform the operations of the LPSE algorithm, which is not provided in HE schemes. In addition, the LPSE algorithm is modified to increase the number of iterations of the numerical methods given depth constraints. Our proposed HE-based LPSE (HELPSE) method is implemented as a client-server model. As a client-side, a virtual keyboard system is implemented on an embedded development board with a camera sensor. A password is obtained from this system, encrypted, and sent over a network to a resource-rich server-side. The proposed HELPSE method is performed on the server. Using depths of about 20, our proposed method shows average error rates of less than 1% compared to the original LPSE algorithm. For a polynomial degree of 32K, the execution time on the server-side is about 5 seconds. 
    more » « less
  5. Reconnaissance is critical for adversaries to prepare attacks causing physical damage in industrial control systems (ICS) like smart power grids. Disrupting reconnaissance is challenging. The state-of-the-art moving target defense (MTD) techniques based on mimicking and simulating system behaviors do not consider the physical infrastructure of power grids and can be easily identified. To overcome these challenges, we propose physical function virtualization (PFV) that “hooks” network interactions with real physical devices and uses these real devices to build lightweight virtual nodes that follow the actual implementation of network stacks, system invariants, and physical state variations in the real devices. On top of PFV, we propose DefRec, a defense mechanism that significantly increases the effort required for an adversary to infer the knowledge of power grids’ cyber-physical infrastructures. By randomizing communications and crafting decoy data for virtual nodes, DefRec can mislead adversaries into designing damage-free attacks. We implement PFV and DefRec in the ONOS network operating system and evaluate them in a cyber-physical testbed, using real devices from different vendors and HP physical switches to simulate six power grids. The experimental results show that with negligible overhead, PFV can accurately follow the behavior of real devices. DefRec can delay adversaries’ reconnaissance for more than 100 years by adding a number of virtual nodes less than or equal to 20% of the number of real devices. 
    more » « less