With the nonstop advancements in Additive Manufacturing (AM), the American workforce needs technical training in several aspects of this leading-edge technology in its utilization and adaptability. The objective of the Additive Manufacturing Workforce Advancement Training Coalition and Hub (AM-WATCH) is to address current gaps in the knowledge base of 21st century professionals through the development of AM-WATCH educational materials tied to ABET Student Outcomes, delivery of professional development activities, and expanded outreach activities targeting K-12 and community college teachers and students. The project significantly
enhances and expands the current resources developed by prior National Science Foundation projects (remote AM facilities, AM learning curriculum and educator workshops) to encompass hands-on desktop 3D printer-building modules, AM equipment operation/maintenance guidelines and additional remotely-accessible AM equipment laboratories. The project establishes a number of cutting edge AM innovations and targets to engage students in STEM and other technical careers while teaching them the latest AM trends and technologies. In short, this project brings many unique innovations to AM practices in teaching, learning, and training.
more »
« less
Additive Manufacturing Studios: a New Way of Teaching ABET Student Outcomes and Continuous Improvement
The Additive Manufacturing Workforce Advancement Training Coalition and Hub (AM-WATCH) targets to address gaps in the current knowledge base of manufacturing professionals through the development of Massive Open Online Courses (MOOCs) based educational materials, delivery of professional development activities, support provided to 30+ instructors per year, and expanded outreach activities targeting K-12 and community college teachers and students. Tennessee Tech University is collaborating with the University of Louisville, Sinclair Community College, National Resource Center for Materials Technology Education, Oak Ridge National Laboratory, and industry in the development of cutting-edge and multi-dimensional educational modules and activities for instructors. Developed materials are presented to 30+ instructors through intensive two-day AM Studios every year. While instructors learn the latest trends and technologies in AM, they also grasp the ABET Student Outcomes and Continuous Improvement. This paper reports the current practices made in these studios and feedback received from the instructors.
more »
« less
- Award ID(s):
- 1601587
- PAR ID:
- 10107924
- Date Published:
- Journal Name:
- ASEE Annual Conference proceedings
- Issue:
- 2018
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A subset of manufacturing, the advanced manufacturing (AM) sector is defined using two criteria:high levels of spending for research and development (R&D) and a high share of STEM jobs within companies. In northwestFlorida, AM employment is concentrated in two sub-sectors (3259-Other Chemicals and 3344-Semiconductor) and in 2015, constituted 24.6% of theregion’s total employment [1, 2]. Guided by the overarching research question (RQ) “To what extent do curriculum content, employer needs, and student experiences align within an advanced manufacturing educational pathway,” this study’s goals are to 1) investigate the role AM program pathways have in meeting the needs of employers and new professionals who are employed in the region; 2) expand the research base and curriculum content recommendations for entrepreneur and intrapreneur education; 3) build regional capacity for AM program assessment and improvement by replicating, refining, and disseminating study approaches through further research, annual meetings with the AM employer and education community, and an academy which lead state college and university researchers, in collaboration with educational organization, to empower ruralNW Florida colleges.more » « less
-
ABSTRACT In 2015 the West Houston Center for Science & Engineering (WHC), Houston Community College, was awarded funding by the National Science Foundation (DMR) to develop a pilot materials science program, Research Experiences and Exploration in Materials Science (REEMS), focused on introducing materials science to aspiring science & engineering community college students. This multifaceted program provides an opportunity for students from a broad array of interests, backgrounds and ages to gain an appreciation for materials science with respect to their academic and career pursuits. Over the approximately four-year duration of the program, REEMS introduces materials science over the academic year through a voluntary seminar series, and, for a select group of students, participation in summer research experiences at collaborating universities. Academic year activities include conferences with the WHC-REEMS transfer advisor, seminars discussing an overview of materials science, the investigation of the roles of materials science in addressing pressing societal issues, and networking with graduate students, university upper division students, materials research faculty and professionals. This paper will provide an overview of the WHC – REEMS program synergies, impacts and partnership dynamics with participating universities: Rice University, the University of Houston, and the McGovern Medical School at the University of Texas Health Science Center-Houston.more » « less
-
The purpose of this paper is to describe the development of a set of scales intended to measure self-efficacy and mindset relating to advanced manufacturing. The scales were developed as part of a larger National Science Foundation funded project intended to create a set of online course and modules about advanced manufacturing. These courses and modules are intended to be completed by a variety of learners, including community-college students, 4-year university students, industry professionals, and informal learners who are looking to advance their skills. The scales will ultimately be used as measures to gauge the impact of the instructional activities being created as part of the NSF project.more » « less
-
One of the fastest growing fields in the broad field of engineering is Additive Manufacturing (AM), also known as 3D Printing. AM is being used in many fields including, among others, design, STEM, construction, art, and healthcare. Many educational institutions however, do not have the requisite capacity and resources to effectively educate students in this area particularly when it comes to rapid transition from design to small-volume level production. A coalition of several higher education institutions under a National Science Foundation (NSF) funded Advanced Technological Education (ATE) Project has been working towards providing educators with the skills and material resources to effectively teach their students about 3D printing. The ultimate beneficiaries are high school and post-secondary students and include those in vocational fields. Before and during Fall 2019, Train the Trainer Studios (TTS) were conducted to train instructors, drawing participants from many institutions across neighboring states designed to provide hands-on instruction to participants. In addition, Massive Open Online Courses (MOOC) and webinars have also been made available to all participating instructors and other collaborators to openly share the information being generated through this ATE AM coalition. Evaluation of the TTS revealed many positive results, with the participants sharing many success stories after implementing the learned concepts at their institutions. From the evaluation findings, participants were largely satisfied with the delivery and quality of instruction they received from all the TTS presenters, with almost all of them, in all instances, indicating that the training they received would be useful in their programs. The current paper and proposed presentation will report on the lessons learned through this process, including sharing some of the success stories from the instructors and their students.more » « less