Network monitoring is an increasingly important task in the operation of today’s large and complex computer networks. In recent years, technologies leveraging software defined networking and programmable hardware have been proposed. These innovations enable operators to get fine-grained insight into every single packet traversing their network at high rates. They generate packet or flow records of all or a subset of traffic in the network and send them to an analytics system that runs specific applications to detect performance or security issues at line rate in a live manner. Unexplored, however, remains the area of detailed, inter- active, and retrospective analysis of network records for debugging or auditing purposes. This is likely due to technical challenges in storing and querying large amounts of network monitoring data efficiently. In this work, we study these challenges in more detail. In particular, we explore recent advances in time series databases and find that these systems not only scale to millions of records per second but also allow for expressive queries significantly simplifying practical network debugging and data analysis in the context of computer network monitoring.
more »
« less
Packet-Level Analytics in Software without Compromises
Traditionally, network monitoring and analytics systems rely on aggregation (e.g., flow records) or sampling to cope with high packet rates. This has the downside that, in doing so, we lose data granularity and accu- racy, and, in general, limit the possible network analytics we can perform. Recent proposals leveraging software- defined networking or programmable hardware provide more fine-grained, per-packet monitoring but are still based on the fundamental principle of data reduction in the network, before analytics. In this paper, we pro- vide a first step towards a cloud-scale, packet-level mon- itoring and analytics system based on stream processing entirely in software. Software provides virtually unlim- ited programmability and makes modern ( e.g.,machine-learning) network analytics applications possible. We identify unique features of network analytics applica- tions which enable the specialization of stream process- ing systems. As a result, an evaluation with our pre- liminary implementation shows that we can scale up to several million packets per second per core and together with load balancing and further optimizations, the vision of cloud-scale per-packet network analytics is possible.
more »
« less
- PAR ID:
- 10107998
- Date Published:
- Journal Name:
- USENIX Workshop on Hot Topics in Cloud Computing (HotCloud)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Full-system simulation of computer systems is critical for capturing the complex interplay between various hard-ware and software components in future systems. Modeling the network subsystem is indispensable for the fidelity of full-system simulations due to the increasing importance of scale-out systems. Over the last decade, the network software stack has undergone major changes, with userspace networking stacks and data-plane networks rapidly replacing the conventional kernel network stack. Nevertheless, the current state-of-the-art architectural simulator, gem5, still employs kernel networking, which precludes realistic network application scenarios. In this work, we first demonstrate the limitations of gem5's current network stack in achieving high network bandwidth. Then, we enable a userspace networking stack on gem5. We extend gem5's NIC hardware model and device driver to sup-port userspace device drivers running the DPDK framework. Additionally, we implement a network load generator hardware model in gem5 to generate various traffic patterns and per-form per-packet timestamp and latency measurements without introducing packet loss. We develop a suite of six network-intensive benchmarks for stress testing the host network stack. These applications, based on DPDK, can run on both gem5 and real systems. Our experimental results show that enabling userspace networking improves gem5's network bandwidth by 6.3× compared with the current Linux kernel software stack. We characterize the performance of DPDK benchmarks running on both a real system and gem5, and evaluate the sensitivity of the applications to various system and microarchitecture parameters. This work marks the first step in refactoring the networking subsystem in gem5.more » « less
-
Advanced high-speed network cards have made packet processing in host operating systems a major performance bottleneck. The kernel network stack gives rise to various sources of overheads that limit the throughput and lengthen the per-packet processing latency. The problem is further exacerbated for short-lived, latency-sensitive network flows such as control packets, online gaming, database requests, etc. — in a highly utilized system, especially in virtualized (containerized) cloud environments, short flows can experience excessively long in-kernel queuing delays. As a consequence, recent research works propose to bypass the kernel network stack to enable lightweight, custom userspace network stacks for improved performance, but at a heavy cost of compatibility and security. In this paper, we take a different approach: We first analyze various sources of inefficiencies in the kernel network stack and propose ways to mitigate them without compromising systems compatibility, security, or flexibility. Further, we propose PRISM, a novel mechanism in the kernel network stack to differentiate incoming packets based on their performance requirements and streamline the processing stages of multi-stage packet processing pipelines (e.g., in container overlay networks). Our evaluation demonstrates that PRISM can significantly improve the latency of high-priority flows in container overly networks in the presence of heavy low-priority background traffic.more » « less
-
null (Ed.)Many Internet of Things (IoT) applications are time-critical and dynamically changing. However, traditional data processing systems (e.g., stream processing systems, cloud-based IoT data processing systems, wide-area data analytics systems) are not well-suited for these IoT applications. These systems often do not scale well with a large number of concurrently running IoT applications, do not support low-latency processing under limited computing resources, and do not adapt to the level of heterogeneity and dynamicity commonly present at edge environments. This suggests a need for a new edge stream processing system that advances the stream processing paradigm to achieve efficiency and flexibility under the constraints presented by edge computing architectures. We present \textsc{Dart}, a scalable and adaptive edge stream processing engine that enables fast processing of a large number of concurrent running IoT applications’ queries in dynamic edge environments. The novelty of our work is the introduction of a dynamic dataflow abstraction by leveraging distributed hash table (DHT) based peer-to-peer (P2P) overlay networks, which can automatically place, chain, and scale stream operators to reduce query latency, adapt to edge dynamics, and recover from failures. We show analytically and empirically that DART outperforms Storm and EdgeWise on query latency and significantly improves scalability and adaptability when processing a large number of real-world IoT stream applications' queries. DART significantly reduces application deployment setup times, becoming the first streaming engine to support DevOps for IoT applications on edge platforms.more » « less
-
Deep learning algorithms are an essential component of video analytics systems, in which the content of a video stream is analyzed. Although numerous studies target optimizing server-based video analysis, partially processing videos on edge devices is beneficial. Since edge devices are closer to data, they deliver initial insights on data before sending it to cloud. In this paper, we present an edge-tailored video analytics system by using a multi-stage network designed to run on heterogeneous computing resources.more » « less
An official website of the United States government

