skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DART: A Scalable and Adaptive Edge Stream Processing Engine
Many Internet of Things (IoT) applications are time-critical and dynamically changing. However, traditional data processing systems (e.g., stream processing systems, cloud-based IoT data processing systems, wide-area data analytics systems) are not well-suited for these IoT applications. These systems often do not scale well with a large number of concurrently running IoT applications, do not support low-latency processing under limited computing resources, and do not adapt to the level of heterogeneity and dynamicity commonly present at edge environments. This suggests a need for a new edge stream processing system that advances the stream processing paradigm to achieve efficiency and flexibility under the constraints presented by edge computing architectures. We present \textsc{Dart}, a scalable and adaptive edge stream processing engine that enables fast processing of a large number of concurrent running IoT applications’ queries in dynamic edge environments. The novelty of our work is the introduction of a dynamic dataflow abstraction by leveraging distributed hash table (DHT) based peer-to-peer (P2P) overlay networks, which can automatically place, chain, and scale stream operators to reduce query latency, adapt to edge dynamics, and recover from failures. We show analytically and empirically that DART outperforms Storm and EdgeWise on query latency and significantly improves scalability and adaptability when processing a large number of real-world IoT stream applications' queries. DART significantly reduces application deployment setup times, becoming the first streaming engine to support DevOps for IoT applications on edge platforms.  more » « less
Award ID(s):
1919181
PAR ID:
10298610
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
USENIX Annual Technical Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the proliferation of Internet of Things (IoT) devices, real-time stream processing at the edge of the network has gained significant attention. However, edge stream processing systems face substantial challenges due to the heterogeneity and constraints of computational and network resources and the intricacies of multi-tenant application hosting. An optimized placement strategy for edge application topology becomes crucial to leverage the advantages offered by Edge computing and enhance the throughput and end-to-end latency of data streams. This paper presents Beaver, a resource scheduling framework designed to efficiently deploy stream processing topologies across distributed edge nodes. Its core is a novel scheduler that employs a synergistic integration of graph partitioning within application topologies and a two-sided matching technique to optimize the strategic placement of stream operators. Beaver aims to achieve optimal performance by minimizing bottlenecks in the network, memory, and CPU resources at the edge. We implemented a prototype of Beaver using Apache Storm and Kubernetes orchestration engine and evaluated its performance using an open-source real-time IoT benchmark (RIoTBench). Compared to state-of-the-art techniques, experimental evaluations demonstrate at least 1.6× improvement in the number of tuples processed within a one-second deadline under varying network delay and bandwidth scenarios. 
    more » « less
  2. Data volumes are exploding as sensors proliferate and become more capable. Edge computing is envisioned as a path to distribute processing and reduce latency. Many models of Edge computing consider small devices running conventional software. Our model includes a more lightweight execution engine for network microservices and a network scheduling framework to configure network processing elements to process streams and direct the appropriate traffic to them. In this article, we describe INDIANA, a complete framework for in-network microservices. We will describe how the two components-the INDIANA network Processing Element (InPE) and the Flange Network Operating System (NOS)-work together to achieve effective in-network processing to improve performance in edge to cloud environments. Our processing elements provide lightweight compute units optimized for efficient stream processing. These elements are customizable and vary in sophistication and resource consumption. The Flange NOS provides first-class flow based reasoning to drive function placement, network configuration, and load balancing that can respond dynamically to network conditions. We describe design considerations and discuss our approach and implementations. We evaluate the performance of stream processing and examine the performance of several exemplar applications on networks of increasing scale and complexity. 
    more » « less
  3. null (Ed.)
    Adaptability is critical for stream processing systems to ensure stable, low-latency, and high-throughput processing of long-running queries. Such adaptability is particularly challenging for wide-area stream processing due to the highly dynamic nature of the wide-area environment, which includes unpredictable workload patterns, variable network bandwidth, occurrence of stragglers, and failures. Unfortunately, existing adaptation techniques typically achieve these performance goals by compromising the quality/accuracy of the results, and they are often application-dependent. In this work, we rethink the adaptability property of wide-area stream processing systems and propose a resource-aware adaptation framework, called WASP. WASP adapts queries through a combination of multiple techniques: task re-assignment, operator scaling, and query re-planning, and applies them in a WAN-aware manner. It is able to automatically determine which adaptation action to take depending on the type of queries, dynamics, and optimization goals. We have implemented a WASP prototype on Apache Flink. Experimental evaluation with the YSB benchmark and a real Twitter trace shows that WASP can handle various dynamics without compromising the quality of the results. 
    more » « less
  4. In the IoT and smart systems era, the massive amount of data generated from various IoT and smart devices are often sent directly to the cloud infrastructure for processing, analyzing, and storing. While handling this big data, conventional cloud infrastructure encounters many challenges, e.g., scarce bandwidth, high latency, real-time constraints, high power, and privacy issues. The edge-centric computing is transpiring as a synergistic solution to address these issues of cloud computing, by enabling processing/analyzing the data closer to the source of the data or at the network’s edge. This in turn allows real-time and in-situ data analytics and processing, which is imperative for many real-world IoT and smart systems, such as smart cars. Since the edge computing is still in its infancy, innovative solutions, models, and techniques are needed to support real-time and in-situ data processing and analysis of edge computing platforms. In this research work, we introduce a novel, unique, and efficient FPGA-HLS-based hardware accelerator for PCA+SVM model for real-time processing and analysis on edge computing platforms. This is inspired by our previous work on PCA+SVM models for edge computing applications. It was demonstrated that the amalgamation of principal component analysis (PCA) and support vector machines (SVM) leads to high classification accuracy in many fields. Also, machine learning techniques, such as SVM, can be utilized for many edge tasks, e.g. anomaly detection, health monitoring, etc.; and dimensionality reduction techniques, such as PCA, are often used to reduce the data size, which in turn vital for memory-constrained edge devices/platforms. Furthermore, our previous works demonstrated that FPGA’s many traits, including parallel processing abilities, low latency, and stable throughput despite the workload, make FPGAs suitable for real-time processing of edge computing applications/platforms. Our proposed FPGA-HLS-based PCA+SVM hardware IP achieves up to 254x speedup compared to its embedded software counterpart, while maintaining small area and low power requirements of edge computing applications. Our experimental results show great potential in utilizing FPGA-based architectures to support real-time processing on edge computing applications. 
    more » « less
  5. null (Ed.)
    Edge computing has emerged as a popular paradigm for supporting mobile and IoT applications with low latency or high bandwidth needs. The attractiveness of edge computing has been further enhanced due to the recent availability of special-purpose hardware to accelerate specific compute tasks, such as deep learning inference, on edge nodes. In this paper, we experimentally compare the benefits and limitations of using specialized edge systems, built using edge accelerators, to more traditional forms of edge and cloud computing. Our experimental study using edge-based AI workloads shows that today's edge accelerators can provide comparable, and in many cases better, performance, when normalized for power or cost, than traditional edge and cloud servers. They also provide latency and bandwidth benefits for split processing, across and within tiers, when using model compression or model splitting, but require dynamic methods to determine the optimal split across tiers. We find that edge accelerators can support varying degrees of concurrency for multi-tenant inference applications, but lack isolation mechanisms necessary for edge cloud multi-tenant hosting. 
    more » « less