skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gut Microbiome: Profound Implications for Diet and Disease
The gut microbiome plays an important role in human health and influences the development of chronic diseases ranging from metabolic disease to gastrointestinal disorders and colorectal cancer. Of increasing prevalence in Western societies, these conditions carry a high burden of care. Dietary patterns and environmental factors have a profound effect on shaping gut microbiota in real time. Diverse populations of intestinal bacteria mediate their beneficial effects through the fermentation of dietary fiber to produce short-chain fatty acids, endogenous signals with important roles in lipid homeostasis and reducing inflammation. Recent progress shows that an individual’s starting microbial profile is a key determinant in predicting their response to intervention with live probiotics. The gut microbiota is complex and challenging to characterize. Enterotypes have been proposed using metrics such as alpha species diversity, the ratio of Firmicutes to Bacteroidetes phyla, and the relative abundance of beneficial genera (e.g., Bifidobacterium, Akkermansia) versus facultative anaerobes (E. coli), pro-inflammatory Ruminococcus, or nonbacterial microbes. Microbiota composition and relative populations of bacterial species are linked to physiologic health along different axes. We review the role of diet quality, carbohydrate intake, fermentable FODMAPs, and prebiotic fiber in maintaining healthy gut flora. The implications are discussed for various conditions including obesity, diabetes, irritable bowel syndrome, inflammatory bowel disease, depression, and cardiovascular disease.  more » « less
Award ID(s):
1516826
PAR ID:
10108016
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nutrients
Volume:
11
Issue:
7
ISSN:
2072-6643
Page Range / eLocation ID:
1613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Manichanh, Chaysavanh (Ed.)
    ABSTRACT Inflammatory bowel diseases (IBDs) are devastating conditions of the gastrointestinal tract with limited treatments, and dietary intervention may be effective and affordable for managing symptoms. Glucosinolate compounds are highly concentrated in broccoli sprouts, especially glucoraphanin (GLR), and can be metabolized by certain mammalian gut bacteria into anti-inflammatory isothiocyanates, such as sulforaphane. Gut microbiota exhibit biogeographic patterns, but it is unknown if colitis alters these or whether the location of glucoraphanin-metabolizing bacteria affects anti-inflammatory benefits. We fed specific pathogen-free C57BL/6 mice either a control diet or a 10% steamed broccoli sprout diet and gave a three-cycle regimen of 2.5% dextran sodium sulfate (DSS) in drinking water over a 34-day experiment to simulate chronic, relapsing ulcerative colitis (UC). We monitored body weight, fecal characteristics, lipocalin, serum cytokines, and bacterial communities from the luminal- and mucosal-associated populations in the jejunum, cecum, and colon. Mice fed the broccoli sprout diet with DSS treatment performed better than mice fed the control diet with DSS, and had significantly more weight gain, lower Disease Activity Index scores, lower plasma lipocalin and proinflammatory cytokines, and higher bacterial richness in all gut locations. Bacterial communities were assorted by gut location but were more homogenous across locations in the control diet + DSS mice. Importantly, our results showed that broccoli sprout feeding abrogated the effects of DSS on gut microbiota, as bacterial richness and biogeography were similar between mice receiving broccoli sprouts with and without DSS. Collectively, these results support the protective effect of steamed broccoli sprouts against dysbiosis and colitis induced by DSS. IMPORTANCEEvaluating bacterial communities across different locations in the gut provides a greater insight than fecal samples alone and provides an additional metric by which to evaluate beneficial host-microbe interactions. Here, we show that 10% steamed broccoli sprouts in the diet protects mice from the negative effects of dextran sodium sulfate-induced colitis, that colitis erases biogeographic patterns of bacterial communities in the gut, and that the cecum is not likely to be a significant contributor to colonic bacteria of interest in the DSS mouse model of ulcerative colitis. Mice fed the broccoli sprout diet during colitis performed better than mice fed the control diet while receiving DSS. The identification of accessible dietary components and concentrations that help maintain and correct the gut microbiome may provide universal and equitable approaches to IBD prevention and recovery, and broccoli sprouts represent a promising strategy. 
    more » « less
  2. Young, Vincent B. (Ed.)
    Cystic fibrosis is a heritable disease that disrupts ion transport at mucosal surfaces, causing a buildup of mucus and dysregulation of microbial communities in both the lungs and the intestines. Persons with CF are known to have dysbiotic gut microbial communities, but the development of these communities over time beginning at birth has not been thoroughly studied. Here, we describe an observation study following the development of the gut microbiome of cwCF throughout the first 4 years of life, during the critical window of both gut microbiome and immune development. Our findings indicate the possibility of the gut microbiota as a reservoir of airway pathogens and a surprisingly early indication of a microbiota associated with inflammatory bowel disease. 
    more » « less
  3. Chu, Hiutung (Ed.)
    ABSTRACT Crohn’s disease (CD) is a presentation of inflammatory bowel disease (IBD) that manifests in childhood and adolescence and involves chronic and severe enterocolitis, immune and gut microbial dysregulation, and other complications. Diet and gut-microbiota-produced metabolites are sources of anti-inflammatories that could ameliorate symptoms. However, questions remain on how IBD influences biogeographic patterns of microbial location and function in the gut, how early life transitional gut communities are affected by IBD and diet interventions, and how disruption to biogeography alters disease mediation by diet components or microbial metabolites. Many studies on diet and IBD use a chemically induced ulcerative colitis model, despite the availability of an immune-modulated CD model. Interleukin-10-knockout (IL-10-KO) mice on a C57BL/6 background, beginning at age 4 or 7 weeks, were fed a control diet or one containing 10% (wt/wt) raw broccoli sprouts, which was high in the sprout-sourced anti-inflammatory sulforaphane. Diets began 7 days prior to, and for 2 weeks after inoculation withHelicobacter hepaticus,which triggers Crohn’s-like symptoms in these immune-impaired mice. The broccoli sprout diet increased sulforaphane in plasma; decreased weight stagnation, fecal blood, and diarrhea associated; and increased microbiota richness in the gut, especially in younger mice. Sprout diets resulted in some anatomically specific bacteria in younger mice and reduced the prevalence and abundance of pathobiont bacteria which trigger inflammation in the IL-10-KO mouse, for example,Escherichia coliandHelicobacter. Overall, the IL-10-KO mouse model is responsive to a raw broccoli sprout diet and represents an opportunity for more diet-host-microbiome research. IMPORTANCETo our knowledge, IL-10-KO mice have not previously been used to investigate the interactions of host, microbiota, and broccoli, broccoli sprouts, or broccoli bioactives in resolving symptoms of CD. We showed that a diet containing 10% raw broccoli sprouts increased the plasma concentration of the anti-inflammatory compound sulforaphane and protected mice to varying degrees against disease symptoms, including weight loss or stagnation, fecal blood, and diarrhea. Younger mice responded more strongly to the diet, further reducing symptoms, as well as increased gut bacterial richness, increased bacterial community similarity to each other, and more location-specific communities than older mice on the diet intervention. Crohn’s disease disrupts the lives of patients and requires people to alter dietary and lifestyle habits to manage symptoms. The current medical treatment is expensive with significant side effects, and a dietary intervention represents an affordable, accessible, and simple strategy to reduce the burden of symptoms. 
    more » « less
  4. Wei, Yanjie; Li, Min; Skums, Pavel; Cai, Zhipeng (Ed.)
    Long-time evolution has shaped a harmonious host-microbiota symbiosis consisting of intestinal microbiota in conjunction with the host immune system. Inflammatory bowel disease (IBD) is a result of the dysbiotic microbial composition together with aberrant mucosal immune responses, while the underlying mechanism is far from clear. In this report, we creatively proposed that when correlating with the host metabolism, functional microbial communities matter more than individual bacteria. Based on this assumption, we performed a systematic analysis to characterize the co-metabolism of host and gut microbiota established on a set of newly diagnosed Crohn’s disease (CD) samples and healthy controls. From the host side, we applied gene set enrichment analysis on host mucosal proteome data to identify those host pathways associated with CD. At the same time, we applied community detection analysis on the metagenomic data of mucosal microbiota to identify those microbial communities, which were assembled for a functional purpose. Then, the correlation analysis between host pathways and microbial communities was conducted. We discovered two microbial communities negatively correlated with IBD enriched host pathways. The dominant genera for these two microbial communities are known as health-benefits and could serve as a reference for designing complex beneficial microorganisms for IBD treatment. The correlated host pathways are all relevant to MHC antigen presentation pathways, which hints toward a possible mechanism of immune-microbiota cross talk underlying IBD. 
    more » « less
  5. Lactobacillaceae are a large, diverse family of Gram-positive lactic acid-producing bacteria. As gut microbiota residents in many mammals, these bacteria are beneficial for health and frequently used as probiotics. Lactobacillaceae abundance in the gastrointestinal tract has been correlated with gastrointestinal pathologies and infection. Microbiota residents must compete for nutrients, including essential metal ions like calcium, zinc, and iron. Recent animal and human studies have revealed that dietary calcium can positively influence the diversity of the gut microbiota and abundance of intestinal Lactobacillaceae species, but the underlying molecular mechanisms remain poorly understood. Here, we investigated the impacts of calcium on the growth and biofilm formation of two distinct Lactobacillaceae species found in the gut microbiota, Lactobacillus acidophilus ATCC 4356 and Lactiplantibacillus plantarum ATCC 14917. We found that calcium ions differentially affect both growth and biofilm formation of these species. In general, calcium supplementation promotes the growth of both species, albeit with some variations in the extent to which different growth parameters were impacted. Calcium ions strongly induce biofilm formation of L. acidophilus ATCC 4356 but not L. plantarum ATCC 14917. Based on bioinformatic analyses and experimental chelator studies, we hypothesize that surface proteins specific to L. acidophilus ATCC 4356, like S-layer proteins, are responsible for Ca2+-induced biofilm formation. The ability of bacteria to form biofilms has been linked with their ability to colonize in the gut microbiota. This work shows how metal ions like Ca2+ may be important not just as nutrients for bacteria growth, but also for their ability to facilitate cell-cell interactions and possibly colonization in the gut microbiota. 
    more » « less