skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: System Integration of Nanostructured Materials for Point-of-Care Immune Biosensing
We report on system integration of plasmonic nanoparticles and a few-layered molybdenum disulfide (M0S2) photoconductive nanochannel sheet on a silicon substrate. Plasma-assisted electrostatic bonding and van der Waals bonding are employed to create a high-sensitivity photoelectronic biosensor for immunological analysis.  more » « less
Award ID(s):
1708706
PAR ID:
10108054
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE 6th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)
Page Range / eLocation ID:
27 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heterogeneous bonding between metals and ceramics is of significant relevance to a wide range of applications in the fields of industry, defense, and aerospace. Metal/ceramic bonding can be used in various specific part applications such as vacuum tubes, automotive use of ceramic rotors, and rocket igniter bodies. However, the bonding of ceramic to metal has been challenging mainly due to (1) the low wettability of ceramics, on which the adhesion of molten adhesive bonders is limited and (2) the large difference between the coefficients of thermal expansion (CTE) of the two dissimilar bonded materials, which develops significant mechanical stresses at the interface and potentially leads to mechanical failures. Vapor-phase deposition is a widely used thin film processing technique in both academic research laboratories and manufacturing industries. Since vapor phase coatings do not require wettability or hydrophobicity, a uniform and strongly adherent layer is deposited over virtually any substrate, including ceramics. In this presentation, we report on the effect of vapor phase-deposited interfacial metal layers on the mechanical properties of bonding between stainless steel and Zerodur (lithium aluminosilicate-based glass ceramic). Direct-current magnetron sputtering was utilized to deposit various thin interfacial layers containing Ti, Cu, or Sn. In addition, to minimize the unfavorable stress at the bonded interface due to the large CTE difference, a low temperature allow solder, that can be chemically and mechanically activated at temperatures of approximately 200 °C, was used. The solder is made from a composite of Ti-Sn-Ce-In. A custom-built fixture and universal testing machine were used to evaluate the bonding strength in shear, which was monitored in-situ with LabView throughout the measurement. The shear strength of the bonding between stainless steel and Zerodur was systematically characterized as a function of interfacial metal and metal processing temperature during sputter depositions. Maximum shear strength of the bonding of 4.36 MPa was obtained with Cu interfacial layers, compared to 3.53 MPa from Sn and 3.42 MPa from Ti adhesion promoting layers. These bonding strengths are significantly higher than those (~0.05 MPa) of contacts without interfacial reactive thin metals. The fracture surface microstructures are presented as well. It was found that the point of failure, when Cu interfacial layers were used, was between the coated Cu film and alloy bonder. This varied from the Sn and Ti interfacial layers where the main point of failure was between the interfacial film and Zerodur interface. The findings of the effect of thin adhesion promoting metal layers and failure behaviors may be of importance to some metal/ceramic heterogeneous bonding studies that require high bonding strength and low residual stresses at the bonding interface. The authors gratefully acknowledge the financial support of the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS. 
    more » « less
  2. Abstract The demand for effective de-bondable adhesive technology enabling substrate separation under small loads has grown in recent years. Thermally Expandable Particles (TEP) can be embedded in structural adhesives to promote mechanical separation of the adherends. However, the activation of TEP additives in joints with non-metallic adherends is challenging and can result in substrate thermal damage and poor de-bonding performance, due to the low thermal conductivity and dielectric loss factor typical of plastics and polymer-matrix composites. In this study, the effect of bondline stainless steel inserts on fully composite (Carbon Fiber Reinforced Polymer, or CFRP) bonded Single Lap Joints (SLJ) mechanical and de-bonding performance is evaluated. A centrifugal mixer is used to disperse the TEP in the adhesive. TEP additives are activated using induction heating of the bondline insert, which also helps control crack initiation and propagation. SLJ de-bonding tests are run under a constant 20 lb (89 N) load, and substrate temperature is recorded with thermocouples and an infrared thermometer. Joint strength is evaluated with quasi-static lap shear tests on a servo-hydraulic tensile test apparatus. Preliminary de-bonding testing is performed on a broad initial set of 316 stainless steel insert designs. Out of those, the four best-performing insert geometries are chosen for the complete study. Two TEP enrichment levels (10% and 20% wt.) are investigated. The mechanical and de-bonding performance of SLJs with steel inserts is compared to TEP-only baseline fully-composite and multi-material (AA 6061 Aluminum Alloy + CFRP) joints. The results show that bondline inserts enable fast de-bonding of fully-composite SLJs. Insert geometry and thickness affect joint de-bonding time and reliability, and can be optimized to allow for a partial recovery of lap shear strength. 100% de-bonding reliability is achieved with “block”-type inserts, with de-bonding performance similar to TEP-enriched metallic joints. Visual inspection of the fracture surfaces shows the relationship between TEP activation and crack propagation path. Discussion and conclusions are provided. 
    more » « less
  3. Abstract Understanding the bonding of gold(I) species has been central to the development of gold(I) catalysis. Herein, we present the synthesis and characterization of the first gold(I)‐cyclobutadiene complex, accompanied with bonding analysis by state‐of‐the‐art energy decomposition analysis methods. Analysis of possible coordination modes for the new species not only confirms established characteristics of gold(I) bonding, but also suggests that Pauli repulsion is a key yet hitherto overlooked element. Additionally, we obtain a new perspective on gold(I)‐bonding by comparison of the gold(I)‐cyclobutadiene to congeners stabilized by p‐, d‐, and f‐block metals. Consequently, we refine the gold(I) bonding model, with a delicate interplay of Pauli repulsion and charge transfer as the key driving force for various coordination motifs. Pauli repulsion is similarly determined as a significant interaction in AuI‐alkyne species, corroborating this revised understanding of AuIbonding. 
    more » « less
  4. The covalent bond classification (CBC) method represents a molecule as ML l X x Z z by evaluating the total number of L, X and Z functions interacting with M. The CBC method is a simplistic approach that is based on the notion that the bonding of a ligating atom (or group of atoms) can be expressed in terms of the number of electrons it contributes to a 2-electron bond. In many cases, the bonding in a molecule of interest can be described in terms of a 2-center 2-electron bonding model and the ML l X x Z z classification can be derived straightforwardly by considering each ligand independently. However, the bonding within a molecule cannot always be described satisfactorily by using a 2-center 2-electron model and, in such situations, the ML l X x Z z classification requires a more detailed consideration than one in which each ligand is treated in an independent manner. The purpose of this article is to provide examples of how the ML l X x Z z classification is obtained in the presence of multicenter bonding interactions. Specific emphasis is given to the treatment of multiple π-acceptor ligands and the impact on the v n configuration, i.e. the number of formally nonbonding electrons on an element of interest. 
    more » « less
  5. MnCoGe-based materials have the potential to exhibit giant magnetocaloric effects due to coupling between magnetic ordering and a martensitic phase transition. Such coupling can be realized by matching the temperatures of the magnetic and structural phase transitions. To understand the site preference of different elements and the effect of hole or electron doping on the stability of different polymorphs of MnCoGe, crystal orbital Hamilton population (COHP) analysis has been employed for the first time to evaluate peculiarities of chemical bonding in this material. The shortest Mn–Mn bond in the structure is found to be pivotal to the observed ferromagnetic behavior and structural stability of hexagonal MnCoGe. Based on this insight, eliminating anti-bonding features of the shortest Mn-Mn bond at the Fermi energy is proposed as a feasible way to stabilize the hexagonal polymorph, which is then realized experimentally by substitution of Zn for Ge. The hexagonal MnCoGe structure is stabilized due to depopulation of the anti-bonding states and strengthening of the Mn–Mn bonding. This change in chemical bonding leads to anisotropic evolution of lattice parameters. The structural and magnetic properties of Zn-doped MnCoGe have been elucidated by synchrotron X-ray diffraction and magnetic measurements, respectively. 
    more » « less