- Award ID(s):
- 1709372
- PAR ID:
- 10108177
- Date Published:
- Journal Name:
- New Journal of Chemistry
- Volume:
- 43
- Issue:
- 28
- ISSN:
- 1144-0546
- Page Range / eLocation ID:
- 11334 to 11341
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this study, magnetic ionic liquids (MILs) consisting of Ni( ii ), Co( ii ), and Mn( ii ) and paired with the bis[(trifluoromethyl)sulfonyl]imide [NTf 2 − ] anion were synthesized from their water soluble chloride intermediates. The MILs feature low viscosity, high hydrophobicity, and hydrolytic stability making them attractive candidates for a number of highly interdisciplinary applications.more » « less
-
null (Ed.)In this study, three magnetic ionic liquids (MILs) were investigated for extraction of four estrogens, i.e., estrone (E1), estradiol (E2), estriol (E3), and ethinylestradiol (EE2), from environmental water. The cation trihexyl(tetradecyl)phosphonium ([P66614]+), selected to confer hydrophobicity to the resulting MIL, was combined with tetrachloroferrate(III), ferricyanide, and dysprosium thiocyanate to yield ([P66614][FeCl4]), ([P66614]3[Fe(CN)6]), and ([P66614]5[Dy(SCN)8]), respectively. After evaluation of various strategies to develop a liquid–liquid microextraction technique based on synthesized MILs, we placed the MILs onto a magnetic stir bar and used them as extracting solvents. After extraction, the MIL-enriched phase was dissolved in methanol and injected into an HPLC–UV for qualitative and quantitative analysis. An experimental design was used to simultaneously evaluate the effect of select variables and optimization of extraction conditions to maximize the recovery of the analytes. Under optimum conditions, limits of detection were in the range of 0.2 (for E3 and E2) and 0.5 μg L−1 (for E1), and calibration curves exhibited linearity in the range of 1–1000 μg L−1 with correlation coefficients higher than 0.998. The percent relative standard deviation (RSD) was below 5.0%. Finally, this method was used to determine concentration of estrogens in real lake and sewage water samples.more » « less
-
Neutron powder diffraction (NPD) and x-ray magnetic circular dichroism (XMCD) spectroscopy are employed to investigate the magnetism and spin structure in single-phase B20 Co1.043Si0.957. The magnetic contributions to the NPD data measured in zero fields are consistent with the helical order among the allowed spin structures derived from group theory. The magnitude of the magnetic moment is (0.3 ± 0.1) μB/Co according to NPD, while the surface magnetization probed by XMCD at 3 kOe is (0.18–0.31) μB/Co. Both values are substantially larger than the bulk magnetization of 0.11 μB/Co determined from magnetometry at 70 kOe and 2 K. These experimental data indicate the formation of a helical spin phase and the associated conical states in high magnetic fields.
-
Abstract Background Plant DNA isolation and purification is a time-consuming and laborious process relative to epithelial and viral DNA sample preparation due to the cell wall. The lysis of plant cells to free intracellular DNA normally requires high temperatures, chemical surfactants, and mechanical separation of plant tissue prior to a DNA purification step. Traditional DNA purification methods also do not aid themselves towards fieldwork due to the numerous chemical and bulky equipment requirements.
Results In this study, intact plant tissue was coated by hydrophobic magnetic ionic liquids (MILs) and ionic liquids (ILs) and allowed to incubate under static conditions or dispersed in a suspension buffer to facilitate cell disruption and DNA extraction. The DNA-enriched MIL or IL was successfully integrated into the qPCR buffer without inhibiting the reaction. The two aforementioned advantages of ILs and MILs allow plant DNA sample preparation to occur in one minute or less without the aid of elevated temperatures or chemical surfactants that typically inhibit enzymatic amplification methods. MIL or IL-coated plant tissue could be successfully integrated into a qPCR assay without the need for custom enzymes or manual DNA isolation/purification steps that are required for conventional methods.
Conclusions The limited amount of equipment, chemicals, and time required to disrupt plant cells while simultaneously extracting DNA using MILs makes the described procedure ideal for fieldwork and lab work in low resource environments.