skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Implementation of Distortion Symmetry for the Nudged Elastic Band Method with DiSPy
The nudged elastic band (NEB) method is a commonly used approach for the calculation of minimum energy pathways of kinetic processes. However, the final paths obtained rely heavily on the nature of the initially chosen path. This often necessitates running multiple calculations with differing starting points in order to obtain accurate results. Recently, it has been shown that the NEB algorithm can only conserve or raise the distortion symmetry exhibited by an initial pathway. Using this knowledge, symmetry- adapted perturbations can be generated and used as a tool to systematically lower the initial path symmetry, enabling the exploration of other low-energy pathways that may exist. Here, the group and representation theory details behind this process are presented and implemented in a standalone piece of software (DiSPy). The method is then demonstrated by applying it to the calculation of ferroelectric switching pathways in LiNbO3. Previously reported pathways are more easily obtained, with new paths also being found which involve a higher degree of atomic coordination.  more » « less
Award ID(s):
1807768
PAR ID:
10108225
Author(s) / Creator(s):
Date Published:
Journal Name:
npj computational materials
Volume:
5
Issue:
52
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a computational study on the solid–solid phase transition of a model two-dimensional system between hexagonal and square phases under pressure. The atomistic mechanism of phase nucleation and propagation are determined using solid-state Dimer and nudged elastic band (NEB) methods. The Dimer is applied to identify the saddle configurations and NEB is applied to generate the transition minimum energy path (MEP) using the outputs of Dimer. Both the atomic and cell degrees of freedom are used in saddle search, allowing us to capture the critical nuclei with relatively small supercells. It is found that the phase nucleation in the model material is triggered by the localized shear deformation that comes from the relative shift between two adjacent atomic layers. In addition to the conventional layer-by-layer phase propagation, an interesting defect-assisted low barrier propagation path is identified in the hexagonal to square phase transition. The study demonstrates the significance of using the Dimer method in exploring unknown transition paths without a priori assumption. The results of this study also shed light on phase transition mechanisms of other solid-state and colloidal systems. 
    more » « less
  2. We present a surface-accelerated string method (SASM) to efficiently optimize low-dimensional reaction pathways from the sampling performed with expensive quantum mechanical/molecular mechanical (QM/MM) Hamiltonians. The SASM accelerates the convergence of the path using the aggregate sampling obtained from the current and previous string iterations, whereas approaches like the string method in collective variables (SMCV) or the modified string method in collective variables (MSMCV) update the path only from the sampling obtained from the current iteration. Furthermore, the SASM decouples the number of images used to perform sampling from the number of synthetic images used to represent the path. The path is optimized on the current best estimate of the free energy surface obtained from all available sampling, and the proposed set of new simulations is not restricted to being located along the optimized path. Instead, the umbrella potential placement is chosen to extend the range of the free energy surface and improve the quality of the free energy estimates near the path. In this manner, the SASM is shown to improve the exploration for a minimum free energy pathway in regions where the free energy surface is relatively flat. Furthermore, it improves the quality of the free energy profile when the string is discretized with too few images. We compare the SASM, SMCV, and MSMCV using 3 QM/MM applications: a ribozyme methyltransferase reaction using 2 reaction coordinates, the 2′-O-transphosphorylation reaction of Hammerhead ribozyme using 3 reaction coordinates, and a tautomeric reaction in B-DNA using 5 reaction coordinates. We show that SASM converges the paths using roughly 3 times less sampling than the SMCV and MSMCV methods. All three algorithms have been implemented in the FE-ToolKit package made freely available. 
    more » « less
  3. We propose a free energy calculation method for receptor–ligand binding, which have multiple binding poses that avoids exhaustive enumeration of the poses. For systems with multiple binding poses, the standard procedure is to enumerate orientations of the binding poses, restrain the ligand to each orientation, and then, calculate the binding free energies for each binding pose. In this study, we modify a part of the thermodynamic cycle in order to sample a broader conformational space of the ligand in the binding site. This modification leads to more accurate free energy calculation without performing separate free energy simulations for each binding pose. We applied our modification to simple model host–guest systems as a test, which have only two binding poses, by using a single decoupling method (SDM) in implicit solvent. The results showed that the binding free energies obtained from our method without knowing the two binding poses were in good agreement with the benchmark results obtained by explicit enumeration of the binding poses. Our method is applicable to other alchemical binding free energy calculation methods such as the double decoupling method (DDM) in explicit solvent. We performed a calculation for a protein–ligand system with explicit solvent using our modified thermodynamic path. The results of the free energy simulation along our modified path were in good agreement with the results of conventional DDM, which requires a separate binding free energy calculation for each of the binding poses of the example of phenol binding to T4 lysozyme in explicit solvent. © 2019 Wiley Periodicals, Inc. 
    more » « less
  4. Fullerenes, in particular C 60 , are important molecular entities in many areas, ranging from material science to medicinal chemistry. However, chemical transformations have to be done in order to transform C 60 in added-value compounds with increased applicability. The most common procedure corresponds to the classical Diels–Alder cycloaddition reaction. In this research, a comprehensive study of the electronic activity that takes place in the cycloaddition between C 60 and cyclopentadiene toward the [5,6] and [6,6] reaction pathways is presented. These are competitive reaction mechanisms dominated by σ and π fluctuating activity. To better understand the electronic activity at each stage of the mechanism, the reaction force (RF) and the symmetry-adapted reaction electronic flux (SA-REF, J Γi ( ξ )) have been used to elucidate whether π or σ bonding changes drive the reaction. Since the studied cycloaddition reaction proceeds through a C s symmetry reaction path, two SA-REF emerge: J A′ ( ξ ) and J A′′ ( ξ ). In particular, J A′ ( ξ ) mainly accounts for bond transformations associated with π bonds, while J A′′ ( ξ ) is sensitive toward σ bonding changes. It was found that the [6,6] path is highly favored over the [5,6] with respect to activation energies. This difference is primarily due to the less intensive electronic reordering of the σ electrons in the [6,6] path, as a result of the pyramidalization of carbon atoms in C 60 (sp 2 → sp 3 transition). Interestingly, no substantial differences in the π electronic activity from the reactant complex to the transition state structure were found when comparing the [5,6] and [6,6] paths. Partition of the kinetic energy into its symmetry contributions indicates that when a bond is being weakened/broken (formed/strengthened) non-spontaneous (spontaneous) changes in the electronic activity occur, thus prompting an increase (decrease) of the kinetic energy. Therefore, contraction (expansion) of the electronic density in the vicinity of the bonding change is expected to take place. 
    more » « less
  5. Mechanochemical reaction pathways are conventionally obtained from force-displaced stationary points on the potential energy surface of the reaction. This work tests a postulate that the steepest-descent pathway (SDP) from the transition state to reactants can be reasonably accurately used instead to investigate mechanochemical reaction kinetics. This method is much simpler because the SDP and the associated reactant and transition-state structures can be obtained relatively routinely. Experiment and theory are compared for the normal-stress-induced decomposition of methyl thiolate species on Cu(100). The mechanochemical reaction rate was calculated by compressing the initial- and transition-state structures by a stiff copper counter-slab to obtain the plots of energy versus slab displacement for both structures. The reaction rate was also measured experimentally under compression using a nanomechanochemical reactor comprising an atomic-force-microscopy (AFM) instrument tip compressing a methyl thiolate overlayer on Cu(100) (the same system for which the calculations were carried out). The rate was measured from the indent created on a defect-free region of the methyl thiolate overlayer, which also enabled the contact area to be measured. Knowing the force applied by the AFM tip yields the reaction rate as a function of the contact stress. The result agrees well with the theoretical prediction without the use of adjustable parameters. This confirms that the postulate is correct and will facilitate the calculation of the rates of more complex mechanochemical reactions. An advantage of this approach, in addition to the results agreeing with the experiment, is that it provides insights into the effects that control mechanochemical reactivity that will assist in the targeted design of new mechanochemical syntheses. 
    more » « less