skip to main content

This content will become publicly available on June 15, 2024

Title: Exploring mechanochemical reactions at the nanoscale: theory versus experiment
Mechanochemical reaction pathways are conventionally obtained from force-displaced stationary points on the potential energy surface of the reaction. This work tests a postulate that the steepest-descent pathway (SDP) from the transition state to reactants can be reasonably accurately used instead to investigate mechanochemical reaction kinetics. This method is much simpler because the SDP and the associated reactant and transition-state structures can be obtained relatively routinely. Experiment and theory are compared for the normal-stress-induced decomposition of methyl thiolate species on Cu(100). The mechanochemical reaction rate was calculated by compressing the initial- and transition-state structures by a stiff copper counter-slab to obtain the plots of energy versus slab displacement for both structures. The reaction rate was also measured experimentally under compression using a nanomechanochemical reactor comprising an atomic-force-microscopy (AFM) instrument tip compressing a methyl thiolate overlayer on Cu(100) (the same system for which the calculations were carried out). The rate was measured from the indent created on a defect-free region of the methyl thiolate overlayer, which also enabled the contact area to be measured. Knowing the force applied by the AFM tip yields the reaction rate as a function of the contact stress. The result agrees well with the theoretical prediction without the use of adjustable parameters. This confirms that the postulate is correct and will facilitate the calculation of the rates of more complex mechanochemical reactions. An advantage of this approach, in addition to the results agreeing with the experiment, is that it provides insights into the effects that control mechanochemical reactivity that will assist in the targeted design of new mechanochemical syntheses.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Page Range / eLocation ID:
15855 to 15861
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rates of mechanochemical reactions are generally found to increase exponentially with applied stress. However, a buckling theory analysis of the effect of a normal stress on an adsorbate that is oriented perpendicularly to the surface that reacts by tilting suggests that a critical value of the stress should be required to initiate a mechanochemical reaction. This concept is verified by using density functional theory calculations to simulate the effect of compressing a homologous series of alkyl thiolate species on copper by a hydrogen-terminated copper counter-face. This predicts that a critical stress is indeed needed to initiate methyl thiolate decomposition, which has a perpendicular C–CH 3 bond. In contrast, no critical stress is found for ethyl thiolate with an almost horizontal C–CH 3 bond, while a critical stress is required to isomerize propyl thiolate from a trans to a cis configuration. These predictions are tested by measuring the mechanochemical reaction rates of these alkyl thiolates on a Cu(100) substrate by sliding an atomic force microscope tip over the surface and finding a critical stress of ∼0.43 GPa for methyl thiolate, ∼0.33 GPa for propyl thiolate, but no evidence of a critical stress for ethyl thiolate, in accord with the predictions. These results provide insights not only into mechanochemical reaction mechanisms on surfaces, but also on the origin of critical phenomena in stress-induced processes in general. It also suggests novel approaches to designing robust surface films that can resist wear and damage. 
    more » « less
  2. Zinc dialkyldithiophosphate (ZDDP), the most widely used antiwear additive in engine oils, has been extensively studied over the last few decades to help understand the origin of its effectiveness. Glassy phosphate-based tribofilms, approximately 100 nm thick, are often formed on surfaces sliding in ZDDP-containing oils, which help to prevent or reduce wear. Recent studies reveal that a combination of applied shear and compressive stresses drive mechanochemical reactions that promote tribofilm growth, and that growth is further accelerated by increased temperature. While recent work has shown that compressive stress alone is insufficient to form tribofilms, the individual effects of the shear stress and compressive stress are not fully understood. Here, shear and compressive stresses are studied separately by using different ratios of high-viscosity, high-traction fluids for testing. This allows the areal mean compressive and shear stresses in the fluid when confined at a loaded sliding interface, to be independently controlled while driving tribofilm growth, which is a system we refer to as a stress-controlled mechanochemical reactor. Tribofilms derived from a secondary ZDDP were generated using a tungsten carbide/tungsten carbide ball-on-disk contact in the full elastohydrodynamic lubrication (EHL) regime using a mini-traction machine (MTM), meaning that solid–solid contact is avoided. The MTM was equipped with a spacer layer imaging (SLIM) capability, permitting in situ measurement of the tribofilm thickness during its growth. The well-separated sliding surfaces generated by the high-viscosity fluids confirm that solid–solid contact is not required for tribofilm formation. Under these full fluid film EHL conditions, shear stress and temperature promote tribofilm growth in accordance with stress-augmented thermal activation. In contrast, under constant shear stress and temperature, compressive stress has the opposite effect, inhibiting tribofilm growth. Using the extended Eyring model for shear- and hydrostatic pressure-affected reaction kinetics, an activation energy of 0.54 ± 0.04 eV is found, consistent with prior studies of ZDDPs. The activation volume for shear stress is found to be 0.18 ± 0.06 nm 3 , while that for the compressive stress component is much smaller, at 0.010 ± 0.004 nm 3 . This not only confirms prior work supporting that shear stress drives tribofilm growth, but demonstrates and quantifies how compressive stress inhibits growth, consistent with the rate-limiting step in tribofilm growth involving a bond-breaking reaction. Implications of these findings are discussed. 
    more » « less
  3. Although earthquakes are one of the most notorious natural disasters, a full understanding of the underlying mechanisms is still lacking. Here, nanoscale friction measurements were performed by atomic force microscopy (AFM) on calcite single crystals with an oxidized silicon tip to investigate the influence of roughness, contact aging, and dry vs. aqueous environment. In dry environments, smooth and rough calcite surfaces yielding single- and multiasperity contacts, respectively, exhibit velocity-weakening ( β D ln V ) or neutral friction at slow sliding velocities and velocity-strengthening friction ( α D ln V ) at higher velocities, while the transition shifts to slower velocities with an increase in roughness. The origin of the velocity-weakening friction is determined to be contact aging resulting from atomic attrition of the crystalline surface. Friction measurements in aqueous environment show evidence of pressure solution at sufficiently slow sliding velocities, which not only significantly reduces friction on single-and multiasperity contacts but also, eliminates atomic attrition and thereby, velocity-weakening friction. Importantly, the friction scaling law evolves from logarithmic ( β D ln V ) into linear ( α P S V ), deviating from commonly accepted rate-and-state friction (RSF) laws; this behavior extends over a wider range of velocities with higher roughness. Above a transition velocity, the scaling law remains logarithmic ( α W ln V ). The friction rate parameters α D , β D , α P S , and α W decrease with load and depend on roughness in a nonmonotonic fashion, like the adhesion, suggesting the relevance of the contact area. The results also reveal that parameters and memory distance differ in dry and aqueous environments, with implications for the understanding of mechanisms underlying RSF laws and fault stability. 
    more » « less
  4. Abstract Electric-field-assisted atomic force microscope (E-AFM) nanolithography is a novel polymer-patterning technique that has diverse applications. E-AFM uses a biased AFM tip with conductive coatings to make patterns with little probe-sample interaction, which thereby avoids the tip wear that is a major issue for contact-mode AFM-based lithography, which usually requires a high probe-sample contact force to fabricate nanopatterns; however, the relatively large tip radius and large tip-sample separation limit its capacity to fabricate high-resolution nanopatterns. In this paper, we developed a contact mode E-AFM nanolithography approach to achieve high-resolution nanolithography of poly (methyl methacrylate) (PMMA) using a conductive AFM probe with a low stiffness (~0.16 N/m). The nanolithography process generates features by biasing the AFM probe across a thin polymer film on a metal substrate. A small constant force (0.5-1 nN) applied on the AFM tip helps engage the tip-film contact, which enhances nanomachining resolution. This E-AFM nanolithography approach enables high-resolution nanopatterning with feature width down to ~16 nm, which is less than one half of the nominal tip radius of the employed conductive AFM probes. 
    more » « less
  5. null (Ed.)
    Multiple gram-negative bacteria encode type III secretion systems (T3SS) that allow them to inject effector proteins directly into host cells to facilitate colonization. To be secreted, effector proteins must be at least partially unfolded to pass through the narrow needle-like channel (diameter <2 nm) of the T3SS. Fusion of effector proteins to tightly packed proteins—such as GFP, ubiquitin, or dihydrofolate reductase (DHFR)—impairs secretion and results in obstruction of the T3SS. Prior observation that unfolding can become rate-limiting for secretion has led to the model that T3SS effector proteins have low thermodynamic stability, facilitating their secretion. Here, we first show that the unfolding free energy ( Δ G unfold 0 ) of two Salmonella effector proteins, SptP and SopE2, are 6.9 and 6.0 kcal/mol, respectively, typical for globular proteins and similar to published Δ G unfold 0 for GFP, ubiquitin, and DHFR. Next, we mechanically unfolded individual SptP and SopE2 molecules by atomic force microscopy (AFM)-based force spectroscopy. SptP and SopE2 unfolded at low force ( F unfold ≤ 17 pN at 100 nm/s), making them among the most mechanically labile proteins studied to date by AFM. Moreover, their mechanical compliance is large, as measured by the distance to the transition state (Δ x ‡ = 1.6 and 1.5 nm for SptP and SopE2, respectively). In contrast, prior measurements of GFP, ubiquitin, and DHFR show them to be mechanically robust ( F unfold > 80 pN) and brittle (Δ x ‡ < 0.4 nm). These results suggest that effector protein unfolding by T3SS is a mechanical process and that mechanical lability facilitates efficient effector protein secretion. 
    more » « less