skip to main content

Title: Towards Testing Monotonicity of Distributions Over General Posets
In this work, we consider the sample complexity required for testing the monotonicity of distributions over partial orders. A distribution p over a poset is {\em monotone} if, for any pair of domain elements x and y such that x⪯y, p(x)≤p(y). To understand the sample complexity of this problem, we introduce a new property called \emph{bigness} over a finite domain, where the distribution is T-big if the minimum probability for any domain element is at least T. We establish a lower bound of Ω(n/logn) for testing bigness of distributions on domains of size n. We then build on these lower bounds to give Ω(n/logn) lower bounds for testing monotonicity over a matching poset of size n and significantly improved lower bounds over the hypercube poset. We give sublinear sample complexity bounds for testing bigness and for testing monotonicity over the matching poset. We then give a number of tools for analyzing upper bounds on the sample complexity of the monotonicity testing problem.
Authors:
; ; ; ;
Award ID(s):
1740751
Publication Date:
NSF-PAR ID:
10108381
Journal Name:
Proceedings of the Thirty-Second Conference on Learning Theory, PMLR
Volume:
99
Page Range or eLocation-ID:
34-82
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we consider the sample complexity required for testing the monotonicity of distributions over partial orders. A distribution p over a poset is monotone if, for any pair of domain elements x and y such that x ⪯ y, p(x) ≤ p(y). To understand the sample complexity of this problem, we introduce a new property called bigness over a finite domain, where the distribution is T-big if the minimum probability for any domain element is at least T. We establish a lower bound of Ω(n/ log n) for testing bigness of distributions on domains of size n. We then build on these lower bounds to give Ω(n/ log n) lower bounds for testing monotonicity over a matching poset of size n and significantly improved lower bounds over the hypercube poset. We give sublinear sample complexity bounds for testing bigness and for testing monotonicity over the matching poset. We then give a number of tools for analyzing upper bounds on the sample complexity of the monotonicity testing problem. The previous lower bound for testing Monotonicity of
  2. We study the problem of testing identity against a given distribution with a focus on the high confidence regime. More precisely, given samples from an unknown distribution p over n elements, an explicitly given distribution q, and parameters 0< epsilon, delta < 1, we wish to distinguish, with probability at least 1-delta, whether the distributions are identical versus epsilon-far in total variation distance. Most prior work focused on the case that delta = Omega(1), for which the sample complexity of identity testing is known to be Theta(sqrt{n}/epsilon^2). Given such an algorithm, one can achieve arbitrarily small values of delta via black-box amplification, which multiplies the required number of samples by Theta(log(1/delta)). We show that black-box amplification is suboptimal for any delta = o(1), and give a new identity tester that achieves the optimal sample complexity. Our new upper and lower bounds show that the optimal sample complexity of identity testing is Theta((1/epsilon^2) (sqrt{n log(1/delta)} + log(1/delta))) for any n, epsilon, and delta. For the special case of uniformity testing, where the given distribution is the uniform distribution U_n over the domain, our new tester is surprisingly simple: to test whether p = U_n versus d_{TV} (p, U_n) >= epsilon, wemore »simply threshold d_{TV}({p^}, U_n), where {p^} is the empirical probability distribution. The fact that this simple "plug-in" estimator is sample-optimal is surprising, even in the constant delta case. Indeed, it was believed that such a tester would not attain sublinear sample complexity even for constant values of epsilon and delta. An important contribution of this work lies in the analysis techniques that we introduce in this context. First, we exploit an underlying strong convexity property to bound from below the expectation gap in the completeness and soundness cases. Second, we give a new, fast method for obtaining provably correct empirical estimates of the true worst-case failure probability for a broad class of uniformity testing statistics over all possible input distributions - including all previously studied statistics for this problem. We believe that our novel analysis techniques will be useful for other distribution testing problems as well.« less
  3. We study the question of testing structured properties (classes) of discrete distributions. Specifically, given sample access to an arbitrary distribution D over [n] and a property P, the goal is to distinguish between D ∈ P and ℓ1(D, P) > ε. We develop a general algorithm for this question, which applies to a large range of “shape-constrained” properties, including monotone, log-concave, t-modal, piecewise-polynomial, and Poisson Binomial distributions. Moreover, for all cases considered, our algorithm has near-optimal sample complexity with regard to the domain size and is computationally efficient. For most of these classes, we provide the first non-trivial tester in the literature. In addition, we also describe a generic method to prove lower bounds for this problem, and use it to show our upper bounds are nearly tight. Finally, we extend some of our techniques to tolerant testing, deriving nearly–tight upper and lower bounds for the corresponding questions.
  4. A Boolean {\em $k$-monotone} function defined over a finite poset domain ${\cal D}$ alternates between the values $0$ and $1$ at most $k$ times on any ascending chain in ${\cal D}$. Therefore, $k$-monotone functions are natural generalizations of the classical {\em monotone} functions, which are the {\em $1$-monotone} functions. Motivated by the recent interest in $k$-monotone functions in the context of circuit complexity and learning theory, and by the central role that monotonicity testing plays in the context of property testing, we initiate a systematic study of $k$-monotone functions, in the property testing model. In this model, the goal is to distinguish functions that are $k$-monotone (or are close to being $k$-monotone) from functions that are far from being $k$-monotone. Our results include the following: \begin{enumerate} \item We demonstrate a separation between testing $k$-monotonicity and testing monotonicity, on the hypercube domain $\{0,1\}^d$, for $k\geq 3$; \item We demonstrate a separation between testing and learning on $\{0,1\}^d$, for $k=\omega(\log d)$: testing $k$-monotonicity can be performed with $2^{O(\sqrt d \cdot \log d\cdot \log{1/\eps})}$ queries, while learning $k$-monotone functions requires $2^{\Omega(k\cdot \sqrt d\cdot{1/\eps})}$ queries (Blais et al. (RANDOM 2015)). \item We present a tolerant test for functions $f\colon[n]^d\to \{0,1\}$ with complexity independent ofmore »$n$, which makes progress on a problem left open by Berman et al. (STOC 2014). \end{enumerate} Our techniques exploit the testing-by-learning paradigm, use novel applications of Fourier analysis on the grid $[n]^d$, and draw connections to distribution testing techniques.« less
  5. We study the problem of certification: given queries to a function f : {0,1}n → {0,1} with certificate complexity ≤ k and an input x⋆, output a size-k certificate for f’s value on x⋆. For monotone functions, a classic local search algorithm of Angluin accomplishes this task with n queries, which we show is optimal for local search algorithms. Our main result is a new algorithm for certifying monotone functions with O(k8 logn) queries, which comes close to matching the information-theoretic lower bound of Ω(k logn). The design and analysis of our algorithm are based on a new connection to threshold phenomena in monotone functions. We further prove exponential-in-k lower bounds when f is non-monotone, and when f is monotone but the algorithm is only given random examples of f. These lower bounds show that assumptions on the structure of f and query access to it are both necessary for the polynomial dependence on k that we achieve.