skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaporation-based Microfluidic Pump Using Super-Hydrophilic Diatom Biosilica Thin Films
Diatoms are a group of single-celled photosynthetic algae that use biochemical pathways to bio-mineralize and self-assemble three-dimensional photonic crystals with unique photonic and micro- & nano-fluidic properties. In recent years, diatom biosilica has been used in surface-enhanced Raman scattering (SERS) based optofluidic sensors for detection of a variety of chemical and biological molecules. In this paper, we present a study to develop a microfluidic pumping system using super-hydrophilic diatom thin films. The desire to develop such a system stems from the requirement to create a low-cost, self-powered microfluidic pumping system that can sustain a continuous flow over an extended period of time. The diatom biosilica acts not only as the driving force behind the flow, but also serves as ultra-sensitive SERS substrates that allows for trace detection of various molecules. Liquid is drawn from a reservoir to the tip of a 150μm inner diameter capillary tube positioned directly over the diatom film. A thin and long horizontal reservoir is used to prevent flooding on the diatom film when the liquid is initially drawn to the diatom film through a capillary tube from the reservoir. The connection of the meniscus from the capillary to the film was maintained from a horizontal reservoir for a recorded time of 20 hours and 32 minutes before the partially filled reservoir emptied. Flow rates of 0.38, 0.22 and 0.16µL/min were achieved for square biosilica thin films of 49mm2, 25mm2, and 9mm2 at a temperature of 63̊F and 45% relative humidity respectively. A temperature-controlled system was introduced for the 49mm2 substrate and flow rates of 0.60, 0.82, 0.93, and 1.15µL/min were observed at 72, 77, 86, and 95̊F at 21% relative humidity respectively. More testing and analysis will be performed to test the operation limits of the proposed self-powered microfluidic system.  more » « less
Award ID(s):
1701339
PAR ID:
10108402
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2019 ASME-SHTC Summer Heat Transfer Conference
ISSN:
978-0-7918-5931-5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Surface‐enhanced Raman scattering (SERS) sensing in microfluidic devices, namely optofluidic‐SERS, suffers an intrinsic tradeoff between mass transport and hot spot density, both of which are required for ultrasensitive detection. To overcome this compromise, photonic crystal‐enhanced plasmonic mesocapsules are synthesized, utilizing diatom biosilica decorated with in‐situ growth silver nanoparticles (Ag NPs). In the optofluidic‐SERS testing of this study, 100× higher enhancement factors and more than 1,000× better detection limit are achieved compared with traditional colloidal Ag NPs, the improvement of which is attributed to unique properties of the mesocapsules. First, the porous diatom biosilica frustules serve as carrier capsules for high density Ag NPs that form high density plasmonic hot‐spots. Second, the submicron‐pores embedded in the frustule walls not only create a large surface‐to‐volume ratio allowing for effective analyte capture, but also enhance the local optical field through the photonic crystal effect. Last, the mesocapsules provide effective mixing with analytes as they are flowing inside the microfluidic channel. The reported mesocapsules achieve single molecule detection of Rhodamine 6G in microfluidic devices and are further utilized to detect 1 × 10−9mof benzene and chlorobenzene compounds in tap water with near real‐time response, which successfully overcomes the constraint of traditional optofluidic sensing. 
    more » « less
  2. Pumping is an essential component in many microfluidic applications. Developing simple, small-footprint, and flexible pumping methods is of great importance to achieve truly lab-on-a-chip systems. Here, we report a novel acoustic pump based on the atomization effect induced by a vibrating sharp-tip capillary. As the liquid is atomized by the vibrating capillary, negative pressure is generated to drive the movement of fluid without the need to fabricate special microstructures or use special channel materials. We studied the influence of the frequency, input power, internal diameter (ID) of the capillary tip, and liquid viscosity on the pumping flow rate. By adjusting the ID of the capillary from 30 µm to 80 µm and the power input from 1 Vpp to 5 Vpp, a flow rate range of 3 to 520 µL/min can be achieved. We also demonstrated the simultaneous operation of two pumps to generate parallel flow with a tunable flow rate ratio. Finally, the capability of performing complex pumping sequences was demonstrated by performing a bead-based ELISA in a 3D-printed microdevice. 
    more » « less
  3. Abstract Tissue-engineered living machines is an emerging discipline that employs complex interactions between living cells and engineered scaffolds to self-assemble biohybrid systems for diverse scientific research and technological applications. Here, we report an adaptive, autonomous biohybrid pumping machine with flow loop feedback powered by engineered living muscles. The tissue is made from skeletal muscle cells (C2C12) and collagen I/Matrigel matrix, which self-assembles into a ring that compresses a soft hydrogel tube connected at both ends to a rigid fluidic platform. The muscle ring contracts in a repetitive fashion autonomously squeezing the tube, resulting in an impedance pump. The resulting flow is circulated back to the muscle ring forming a feedback loop, which allows the pump to respond to the cues received from the flow it generates and adaptively manage its pumping performances based on the feedback. The developed biohybrid pumping system may have broad utility and impact in health, medicine and bioengineering. 
    more » « less
  4. Abstract This study presents the development and morphology analysis of bioinspired 3D cardiovascular tissue models cultured within a dynamic capillary circuit microfluidic device. This study is significant because our in vitro 3D cardiovascular tissue models retained within a capillary circuit microfluidic device provide a less expensive, more controlled, and reproducible platform for more physiologically-relevant evaluation of cellular response to microenvironmental stimuli. The overall aim of our study is to demonstrate our cardiovascular tissue model (CTM) and vascular tissue model (VTM) actively changed their cellular morphology and exhibited structural reorganization in response to biophysical stimuli provided by microposts within the device tissue culture chambers during a 5-day period. The microfluidic device in this study was designed with the Young–Laplace and Navier–Stokes principles of capillary driven fluid flow and fabricated with 3D stereolithography (SLA) printing. The cardiac tissue model and vascular tissue model presented in this study were developed by encapsulating AC16 cardiomyocytes (CTM) and Human umbilical vein endothelial cells (VTM) in a fibrin hydrogel which were subsequently loaded into a capillary circuit microfluidic device. The cardiovascular tissue models were analyzed with fluorescent microscopy for morphological differences, average tube length, and cell orientation. We determined the VTM displayed capillary-like tube formation and the cells within both cardiovascular tissue models continued to elongate around microposts by day-5 which indicates the microfluidic system provided biophysical cues to guide cell structure and direction-specific organization. 
    more » « less
  5. We report the design, fabrication, and testing of an atomic layer deposition (ALD) system that is capable of reflection high energy electron diffraction (RHEED) in a single chamber. The details and specifications of the system are described and include capabilities of RHEED at varied accelerating voltages, sample rotation (azimuthal) control, sample height control, sample heating up to set temperatures of 1050 °C, and either single- or dual-differential pumping designs. Thermal and flow simulations were used to justify selected system dimensions as well as carrier gas/precursor mass flow rates. Temperature calibration was conducted to determine actual sample temperatures that are necessary for meaningful analysis of thermally induced transitions in ALD thin films. Several demonstrations of RHEED in the system are described. Calibration of the camera length was conducted using a gold thin film by analyzing RHEED images. Finally, RHEED conducted at a series of increasing temperatures was used to monitor the crystallization of an ALD HfO2 thin film. The crystallization temperature and the ring pattern were consistent with the monoclinic structure as determined by separate x-ray diffraction-based measurements. 
    more » « less