When quantum computers become scalable and reliable, they are likely to break all public-key cryptography standards, such as RSA and Elliptic Curve Cryptography. The projected threat of quantum computers has led the U.S. National Institute of Standards and Technology (NIST) to an effort aimed at replacing existing public-key cryptography standards with new quantum-resistant alternatives. In December 2017, 69 candidates were accepted by NIST to Round 1 of the NIST Post-Quantum Cryptography (PQC) standardization process. NTRUEncrypt is one of the most well-known PQC algorithms that has withstood cryptanalysis. The speed of NTRUEncrypt in software, especially on embedded software platforms, is limitedmore »
Software/Hardware Codesign of the Post Quantum Cryptography Algorithm NTRUEncrypt Using High-Level Synthesis and Register-Transfer Level Design Methodologies
When quantum computers become scalable and reliable, they are likely to break all public-key cryptography standards, such as RSA and Elliptic Curve Cryptography. The projected threat of quantum computers has led the U.S. National Institute of Standards and Technology (NIST) to an effort aimed at replacing existing public-key cryptography standards with new quantum-resistant alternatives. In December 2017, 69 candidates were accepted by NIST to Round 1 of the NIST Post-Quantum Cryptography (PQC) standardization process. NTRUEncrypt is one of the most well-known PQC algorithms that has withstood cryptanalysis. The speed of NTRUEncrypt in software, especially on embedded software platforms, is limited by the long execution time of its primary operation, polynomial multiplication. In this paper, we investigate speeding up NTRUEncrypt using software/hardware codesign on a Xilinx Zynq UltraScale+ multiprocessor system-on-chip (MPSoC). Polynomial multiplication is implemented in the Programmable Logic (PL) of Zynq using two approaches: traditional Register-Transfer Level (RTL) and High-Level Synthesis (HLS). The remaining operations of NTRUEncrypt are executed in software on the Processing System (PS) of Zynq, using the bare-metal mode. The speed-up of our software/hardware codesigns vs. purely software implementations is determined experimentally and analyzed in the paper. The results are reported for the RTL-based and HLS-based hardware more »
- Award ID(s):
- 1801512
- Publication Date:
- NSF-PAR ID:
- 10108524
- Journal Name:
- 2019 29th International Conference on Field Programmable Logic and Applications (FPL), Barcelona, Spain, Sep. 9-13, 2019
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The speed of NTRU-based Key Encapsulation Mechanisms (KEMs) in software, especially on embedded software platforms, is limited by the long execution time of its primary operation, polynomial multiplication. In this paper, we investigate the potential for speeding up the implementations of four NTRU-based KEMs, using software/hardware codesign, when targeting Xilinx Zynq UltraScale+ multiprocessor system-on-chip (MPSoC). All investigated algorithms compete in Round 1 of the NIST PQC standardization process. They include: ntru-kem from the NTRUEncrypt submission, Streamlined NTRU Prime and NTRU LPRime KEMs of the NTRU Prime candidate, and NTRU- HRSS-KEM from the submission of the same name. The most time-consumingmore »
-
It has been predicted that within the next tenfifteen years, quantum computers will have computational power sufficient to break current public-key cryptography schemes. When that happens, all traditional methods of dealing with the growing computational capabilities of potential attackers, such as increasing key sizes, will be futile. The only viable solution is to develop new standards based on algorithms that are resistant to quantum computer attacks and capable of being executed on traditional computing platforms, such as microprocessors and FPGAs. Leading candidates for new standards include lattice-based post-quantum cryptography (PQC) algorithms. In this paper, we present the results of implementingmore »
-
The recent advancement in quantum technology has initiated a new round of cryptosystem innovation, i.e., the emergence of Post-Quantum Cryptography (PQC). This new class of cryptographic schemes is intended to be mathematically resistant against any known attacks using quantum computers, but, at the same time, be fully implementable using traditional semiconductor technology. The National Institutes of Standards and Technology (NIST) has already started the PQC standardization process, and the initial pool of 69 submissions has been reduced to 26 Round 2 candidates. Echoing the pace of the PQC "revolution," this paper gives a detailed and thorough introduction to recent advancesmore »
-
Due to an emerging threat of quantum computing, one of the major challenges facing the cryptographic community is a timely transition from traditional public-key cryptosystems, such as RSA and Elliptic Curve Cryptography, to a new class of algorithms, collectively referred to as Post-Quantum Cryptography (PQC). Several promising candidates for a new PQC standard can have their software and hardware implementations accelerated using the Number Theoretic Transform (NTT). In this paper, we present an improved hardware architecture for NTT, with the hardware-friendly modular reduction, and demonstrate that this architecture can be efficiently implemented in hardware using High-Level Synthesis (HLS). The novelmore »