Large‐scale analysis of functional connectivity within intrinsic brain networks using functional magnetic resonance imaging (fMRI) data has been widely used for identifying biomarkers in various psychiatric disorders. While the emerging access to large neuroimaging datasets provides unprecedented opportunities for exploring brain functions, they also pose significant computational complexity challenges due to the large amount of inherent variability across individuals and the complexity of brain activity patterns. To address these challenges, this paper introduces two novel constrained ICA methods, arc‐EBM and minc‐EBM, designed to overcome the computational complexity issue by incorporating prior information into the analysis framework. The proposed methods preserve the subject variability by adaptively selecting the constrained parameters for different functional networks and individuals, while also allowing estimation flexibility for activities not covered by the prior information through the concept of free components. Our methods are shown to enhance the precision of functional network estimation and improve the capture of subject variability across different cohorts. We evaluate the proposed methods using both synthetic and real fMRI data. By applying the proposed methods to a resting‐state fMRI dataset including 179 subjects, both algorithms successfully reveal significant group differences in functional network connectivity between healthy controls and schizophrenia patients. The observed group differences, particularly the abnormal connectivity alterations in networks involving the thalamus, subthalamus/hypothalamus, and superior temporal gyrus, align with findings from previous clinical studies. Furthermore, our results demonstrate that the constraint parameters adaptively selected by arc‐EBM reveal more diverse resting‐state network structures in individuals with schizophrenia compared with healthy controls. This finding is consistent with prior studies and suggests that the selected constraint parameters could serve as potential biomarkers for mental disorder diagnosis. 
                        more » 
                        « less   
                    
                            
                            Regularized joint estimation of related vector autoregressive models
                        
                    
    
            In a number of applications, one has access to high-dimensional time series data on several related subjects. A motivating application area comes from the neuroimaging field, such as brain fMRI time series data, obtained from various groups of subjects (cases/controls) with a specific neurological disorder. The problem of regularized joint estimation of multiple related Vector Autoregressive (VAR) models is discussed, leveraging a group lasso penalty in addition to a regular lasso one, so as to increase statistical efficiency of the estimates by borrowing strength across the models. A modeling framework is developed that it allows for both group-level and subject-specific effects for related subjects, using a group lasso penalty to estimate the former. An estimation procedure is introduced, whose performance is illustrated on synthetic data and compared to other state-of-the-art methods. Moreover, the proposed approach is employed for the analysis of resting state fMRI data. In particular, a group-level descriptive analysis is conducted for brain inter-regional temporal effects of Attention Deficit Hyperactive Disorder (ADHD) patients as opposed to controls, with the data available from the ADHD-200 Global Competition repository. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1821220
- PAR ID:
- 10108540
- Date Published:
- Journal Name:
- Computational statistics & data analysis
- Volume:
- 139
- ISSN:
- 1872-7352
- Page Range / eLocation ID:
- 164-177
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Attention deficit hyperactivity disorder (ADHD) is one of the most common brain disorders among children. This disorder is considered as a big threat for public health and causes attention, focus and organizing difficulties for children and even adults. Since the cause of ADHD is not known yet, data mining algorithms are being used to help discover patterns which discriminate healthy from ADHD subjects. Numerous efforts are underway with the goal of developing classification tools for ADHD diagnosis based on functional and structural magnetic resonance imaging data of the brain. In this paper, we used Eros, which is a technique for computing similarity between two multivariate time series along with k-Nearest-Neighbor classifier, to classify healthy vs ADHD children. We designed a model selection scheme called J-Eros which is able to pick the optimum value of k for k-Nearest-Neighbor from the training data. We applied this technique to the public data provided by ADHD-200 Consortium competition and our results show that J-Eros is capable of discriminating healthy from ADHD children such that we outperformed the best results reported by ADHD-200 competition about 20 percent for two datasets. The implemented code is available as GPL license on GitHub portal of our lab at https://github.com/pcdslab/J-Eros.more » « less
- 
            Estimation of the conditional independence graph (CIG) of high-dimensional multivariate Gaussian time series from multi-attribute data is considered. All existing methods for graph estimation for such data are based on single-attribute models where one associates a scalar time series with each node. In multi-attribute graphical models, each node represents a random vector or vector time series. In this paper we provide a unified theoretical analysis of multi-attribute graph learning for dependent time series using a penalized log-likelihood objective function. We consider both convex (sparse-group lasso) and non-convex (log-sum and SCAD group penalties) penalty/regularization functions. We establish sufficient conditions in a high-dimensional setting for consistency (convergence of the inverse power spectral density to true value in the Frobenius norm), local convexity when using non-convex penalties, and graph recovery. We illustrate our approach using numerical examples utilizing both synthetic and real data.more » « less
- 
            Estimation of the conditional independence graph (CIG) of high-dimensional multivariate Gaussian time series from multi-attribute data is considered. Existing methods for graph estimation for such data are based on single-attribute models where one associates a scalar time series with each node.In multi-attribute graphical models, each node represents a random vector or vector time series. In this paper we provide a unified theoretical analysis of multi-attribute graph learning for dependent time series using a penalized log-likelihood objective function formulated in the frequency domain using the discrete Fourier transform of the time-domain data. We consider both convex (sparse-group lasso) and non-convex(log-sum and SCAD group penalties) penalty/regularization functions. We establish sufficient conditions in a high-dimensional setting for consistency (convergence of the inverse power spectral density to true value in the Frobenius norm), local convexity when using non-convex penalties, and graph recovery. We do not impose any incoherence or irrepresentability condition for our convergence results. We also empirically investigate selection of the tuning parameters based on the Bayesian information criterion, and illustrate our approach using numerical examples utilizing both synthetic and real data.more » « less
- 
            Quantitative analysis of brain disorders such as Autism Spectrum Disorder (ASD) is an ongoing field of research. Machine learning and deep learning techniques have been playing an important role in automating the diagnosis of brain disorders by extracting discriminative features from the brain data. In this study, we propose a model called Auto-ASD-Network in order to classify subjects with Autism disorder from healthy subjects using only fMRI data. Our model consists of a multilayer perceptron (MLP) with two hidden layers. We use an algorithm called SMOTE for performing data augmentation in order to generate artificial data and avoid overfitting, which helps increase the classification accuracy. We further investigate the discriminative power of features extracted using MLP by feeding them to an SVM classifier. In order to optimize the hyperparameters of SVM, we use a technique called Auto Tune Models (ATM) which searches over the hyperparameter space to find the best values of SVM hyperparameters. Our model achieves more than 70% classification accuracy for 4 fMRI datasets with the highest accuracy of 80%. It improves the performance of SVM by 26%, the stand-alone MLP by 16% and the state of the art method in ASD classification by 14%. The implemented code will be available as GPL license on GitHub portal of our lab (https://github.com/PCDS).more » « less
 An official website of the United States government
An official website of the United States government 
				
			
 
                                    