skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mangrove Damage, Delayed Mortality, and Early Recovery Following Hurricane Irma at Two Landfall Sites in Southwest Florida, USA
Mangrove forests along the coastlines of the tropical and sub-tropical western Atlantic are intermittently impacted by hurricanes and can be damaged by high-speed winds, high-energy storm surges, and storm surge sediment deposits that suffocate tree roots. This study quantified trends in damage, delayed mortality, and early signs of below- and aboveground recovery in mangrove forests in the Lower Florida Keys and Ten Thousand Islands following direct hits by Hurricane Irma in September 2017. Mangrove trees suffered 19% mortality at sites in the Lower Florida Keys and 11% in the Ten Thousand Islands 2–3 months post-storm; 9 months post-storm, mortality in these locations increased to 36% and 20%, respectively. Delayed mortality of mangrove trees was associated with the presence of a carbonate mud storm surge deposit on the forest floor. Mortality and severe branch damage were more common for mangrove trees than for mangrove saplings. Canopy coverage increased from 40% cover 1–2 months post-storm to 60% cover 3–6 months post-storm. Canopy coverage remained the same 9 months post-storm, providing light to an understory of predominantly Rhizophora mangle (red mangrove) seedlings. Soil shear strength was higher in the Lower Florida Keys and varied with depth; no significant trends were found in shear strength between fringe or basin plots. Rates of root growth, as assessed using root in-growth bags, were relatively low at 0.01–11.0 g m−2 month−1 and were higher in the Ten Thousand Islands. This study demonstrated that significant delayed mangrove mortality can occur 3–9 months after a hurricane has passed, with some mortality attributable to smothering by storm surge deposits.  more » « less
Award ID(s):
1633557
PAR ID:
10108597
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Estuaries and Coasts
ISSN:
1559-2723
Page Range / eLocation ID:
1-15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Overwash deposits from tropical cyclone-induced storm surges are commonly used as modern analogues for paleo-storm studies. However, the evolution of these deposits between their time of deposition and their incorporation into the geologic record is poorly understood. To understand how the characteristics of an overwash deposit can change over time, we analyzed overwash deposits from four mangrove islands in southern Florida two to three months and twenty-two months after Hurricane Irma's landfall in the region on 10 September 2017. We analyzed the stratigraphy, mean grain size, organic and carbonate contents, stable carbon isotopic signatures, and microfossil (foraminifera and diatom) assemblages of pre-Irma and Irma overwash sediments. Hurricane Irma's storm surge deposited light gray carbonate muds and sands up to 11 cm thick over red organic-rich mangrove peats throughout mangrove islands in southern Florida. Stratigraphy, grain size, loss-on-ignition, and foraminifera analyses provided the strongest evidence for differentiating Irma's overwash deposit from underlying mangrove peats and, if preserved, are expected to identify Hurricane Irma's overwash event within the geologic record. Mean grain size showed the overwash deposit (5.0 ± 0.8 ɸ) was coarser than underlying mangrove peats (6.7 ± 0.7 ɸ), and loss-on-ignition showed the overwash deposit had a lower organic content (19.8 ± 9.1%) and a higher carbonate content (67.8 ± 20.7%) than the underlying peats (59.4 ± 14.6% and 33.7 ± 11.0%, respectively). The overwash deposit was dominated by a diverse, abundant assemblage of sub-tidal benthic calcareous foraminifera compared to a uniform, sparse assemblage of agglutinated foraminifera in the pre-Irma mangrove peats. Geochemical indicators were not able to provide evidence of an overwash event by differentiating organic δ13C or C/N of the overwash deposit from those of the mangrove peats. The complex relationship between diatoms and local environmental factors prevented diatom assemblages from providing a statistically clear distinction between Irma's overwash sediments and underlying mangrove peats. By visiting Hurricane Irma's overwash deposit immediately following landfall and nearly two years post-storm, we were able to document how the overwash deposit's characteristics changed over time. Continued monitoring on the scale of five to ten years would provide further insights into the preservation of overwash deposits for paleo-storm studies. 
    more » « less
  2. In September 2017, Hurricane Irma made landfall in South Florida, causing a great deal of damage to mangrove forests along the southwest coast. A combination of hurricane strength winds and high storm surge across the area resulted in canopy defoliation, broken branches, and downed trees. Evaluating changes in mangrove forest structure is significant, as a loss or change in mangrove forest structure can lead to loss in the ecosystems services that they provide. In this study, we used lidar remote sensing technology and field data to assess damage to the South Florida mangrove forests from Hurricane Irma. Lidar data provided an opportunity to investigate changes in mangrove forests using 3D high-resolution data to assess hurricane-induced changes at different tree structure levels. Using lidar data in conjunction with field observations, we were able to model aboveground necromass (AGN; standing dead trees) on a regional scale across the Shark River and Harney River within Everglades National Park. AGN estimates were higher in the mouth and downstream section of Shark River and higher in the downstream section of the Harney River, with higher impact observed in Shark River. Mean AGN estimates were 46 Mg/ha in Shark River and 38 Mg/ha in Harney River and an average loss of 29% in biomass, showing a significant damage when compared to other areas impacted by Hurricane Irma and previous disturbances in our study region. 
    more » « less
  3. Abstract Mangroves buffer inland ecosystems from hurricane winds and storm surge. However, their ability to withstand harsh cyclone conditions depends on plant resilience traits and geomorphology. Using airborne lidar and satellite imagery collected before and after Hurricane Irma, we estimated that 62% of mangroves in southwest Florida suffered canopy damage, with largest impacts in tall forests (>10 m). Mangroves on well-drained sites (83%) resprouted new leaves within one year after the storm. By contrast, in poorly-drained inland sites, we detected one of the largest mangrove diebacks on record (10,760 ha), triggered by Irma. We found evidence that the combination of low elevation (median = 9.4 cm asl), storm surge water levels (>1.4 m above the ground surface), and hydrologic isolation drove coastal forest vulnerability and were independent of tree height or wind exposure. Our results indicated that storm surge and ponding caused dieback, not wind. Tidal restoration and hydrologic management in these vulnerable, low-lying coastal areas can reduce mangrove mortality and improve resilience to future cyclones. 
    more » « less
  4. Coastal mangrove forests provide numerous ecosystem services, which can be disrupted by natural disturbances, mainly hurricanes. Canopy height (CH) is a key parameter for estimating carbon storage. Airborne Light Detection and Ranging (LiDAR) is widely viewed as the most accurate method for estimating CH but data are often limited in spatial coverage and are not readily available for rapid impact assessment after hurricane events. Hence, we evaluated the use of systematically acquired space-based Synthetic Aperture Radar (SAR) and optical observations with airborne LiDAR to predict CH across expansive mangrove areas in South Florida that were severely impacted by Category 3 Hurricane Irma in 2017. We used pre- and post-Irma LiDAR-derived canopy height models (CHMs) to train Random Forest regression models that used features of Sentinel-1 SAR time series, Landsat-8 optical, and classified mangrove maps. We evaluated (1) spatial transfer learning to predict regional CH for both time periods and (2) temporal transfer learning coupled with species-specific error correction models to predict post-Irma CH using models trained by pre-Irma data. Model performance of SAR and optical data differed with time period and across height classes. For spatial transfer, SAR data models achieved higher accuracy than optical models for post-Irma, while the opposite was the case for the pre-Irma period. For temporal transfer, SAR models were more accurate for tall trees (>10 m) but optical models were more accurate for short trees. By fusing data of both sensors, spatial and temporal transfer learning achieved the root mean square errors (RMSEs) of 1.9 m and 1.7 m, respectively, for absolute CH. Predicted CH losses were comparable with LiDAR-derived reference values across height and species classes. Spatial and temporal transfer learning techniques applied to readily available spaceborne satellite data can enable conservation managers to assess the impacts of disturbances on regional coastal ecosystems efficiently and within a practical timeframe after a disturbance event. 
    more » « less
  5. Abstract. On 10 September 2017, Hurricane Irma made landfall in the Florida Keys and caused significant damage. Informed by hydrodynamic storm surge and wave modeling and post-storm satellite imagery, a rapid damage survey was soon conducted for 1600+ residential buildings in Big Pine Key and Marathon. Damage categorizations and statistical analysis reveal distinct factors governing damage at these two locations. The distance from the coast is significant for the damage in Big Pine Key, as severely damaged buildings were located near narrow waterways connected to the ocean. Building type and size are critical in Marathon, highlighted by the near-complete destruction of trailer communities there. These observations raise issues of affordability and equity that need consideration in damage recovery and rebuilding for resilience. 
    more » « less