skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Brief communication: Rapid assessment of damaged residential buildings in the Florida Keys after Hurricane Irma
Abstract. On 10 September 2017, Hurricane Irma made landfall in the Florida Keys and caused significant damage. Informed by hydrodynamic storm surge and wave modeling and post-storm satellite imagery, a rapid damage survey was soon conducted for 1600+ residential buildings in Big Pine Key and Marathon. Damage categorizations and statistical analysis reveal distinct factors governing damage at these two locations. The distance from the coast is significant for the damage in Big Pine Key, as severely damaged buildings were located near narrow waterways connected to the ocean. Building type and size are critical in Marathon, highlighted by the near-complete destruction of trailer communities there. These observations raise issues of affordability and equity that need consideration in damage recovery and rebuilding for resilience.  more » « less
Award ID(s):
1652448
PAR ID:
10072458
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Natural Hazards and Earth System Sciences
Volume:
18
Issue:
7
ISSN:
1684-9981
Page Range / eLocation ID:
2041 to 2045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Observing damage and documenting successful performance of buildings and other structures. Classes include residential, commercial, and power infrastructure. Methodologies include detailed damage assessments in Fulcrum, deployment of UAS for high-resolution aerial imagery, and deployment of surface-level panoramic imaging devices. Hazard indicators were also captured.In the early morning hours of March 3, 2020, a strong tornado struck the City of Nashville and the surrounding metropolitan region with estimated maximum wind speeds of 165 mph. The tornado passed through Nashville and continued east for 53 miles, impacting the communities of Donelson, Mt. Juliet and Lebanon before lifting. The same storm system then produced a second tornado that struck Cookeville, TN with estimated wind speeds of 175 mph. The Nashville tornado was the third tornado that passed through the Five Points area of Nashville. Damage was reported across a diverse cross-section of buildings spanning a number of communities: Camden, Germantown/North Nashville, East Nashville/Five Points, Donelson, Mt. Juliet, Lebanon and Cookeville. Exposure of an urban metro area to this series of tornadoes resulted in significant impacts to power infrastructure and building performance ranging from loss of roof cover and broken windows to complete destruction. Affected typologies and building classes include single and multi-family wood framed homes, commercial construction (ranging from big box stores down to smaller restaurants/retail shops), airport and industrial buildings, and a number of schools. More gravely, these nocturnal tornadoes claimed two dozen lives and injured hundreds more. Given the loss of life and property in this event and the fact that the Nashville tornado sequence impacted an urban area with diverse building classes and typologies, this event offers an opportunity to advance our knowledge of structural resistance to strong winds, particularly given that new construction was among the inventory significantly damaged. This project encompasses the products of StEER's response to this event: Preliminary Virtual Reconnaissance Report (PVRR), Early Access Reconnaissance Report (EARR) and Curated Dataset. 
    more » « less
  2. Significant and widespread liquefaction occurred in İskenderun during the 2023 moment magnitude (Mw) 7.8 Kahramanmaraş earthquake. Liquefaction effects on buildings were observed in several areas of İskenderun, predominantly in areas of reclaimed land and near historic shorelines. Liquefaction-induced building settlements were particularly concentrated in the Çay District, which is almost entirely reclaimed land. Liquefaction-induced ground and building settlements were either marginal or not apparent in areas away from the historical shorelines. Building settlement and ground deformation were documented at 26 buildings in İskenderun through lidar scans and laser-level hand measurements. Liquefaction-induced building settlements ranged from 0 to 740 mm. Building-ground interactions were evident from hogging ground deformations, including cases where buildings deformed nearby ground and damaged nearby buildings, and sagging buildings. Historic land development affected the spatial extent of observed liquefaction-induced building damage. Representative liquefaction-induced building settlement and building interaction case histories are discussed and key insights are shared. 
    more » « less
  3. null (Ed.)
    Inundation from storms like Hurricanes Katrina and Sandy, and the 2011 East Japan tsunami, have caused catastrophic damage to coastal communities. Prediction of surge, wave, and tsunami flow transformation over the built and natural environment is essential in determining survival and failure of near-coast structures. However, unlike earthquake and wind hazards, overland flow event loading and damage often vary strongly at a parcel scale in built-up coastal regions due to the influence of nearby structures and vegetation on hydrodynamic transformation. Additionally, overland flow hydrodynamics and loading are presently treated using a variety of simplified methods (e.g. bare earth method) which introduce significant uncertainty and/or bias. This study describes an extensive series of large-scale experiments to create a comprehensive dataset of detailed hydrodynamics and forces on an array of coastal structures (representing buildings of a community on a barrier island) subject to the variability of storm waves, surge, and tsunami, incorporating the effect of overland flow, 3D flow alteration due to near-structure shielding, vegetation, waterborne debris, and building damage.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/EDLiEK6b64E 
    more » « less
  4. Near-field earthquake ground motions characterized by strong velocity pulses can cause extensive damage to buildings and structures. Such pulses were identified during the Mw 7.8 and Mw 7.5 earthquake doublet of the 2023 Turkey seismic sequence, potentially contributing to the extensive damage it caused. Therefore, a better understanding and characterization of pulse properties (e.g. period and amplitude) and their underlying physical factors are crucial for earthquake-resistant design. In this study, we characterize the velocity pulses reported in observed records and synthetic waveforms generated by a three-dimensional (3D) dynamic rupture simulation of the Mw 7.8 event. We observed significant variability in the pulse properties of the observed records in near-fault regions, particularly regarding their orientations. This variability was not fully captured by the dynamic rupture simulation. Our results indicate that directivity effects are not the only factors influencing pulse characteristics in this earthquake doublet. While site effects (e.g. basin effects) may influence pulse characteristics at some stations, local heterogeneities in slip amplitude, orientations, and fault geometries can be critical in generating or influencing pulse properties in this earthquake doublet. 
    more » « less
  5. Significant and widespread liquefaction occurred in İskenderun during the 2023 Mw 7.8 Kahramanmaraş earthquake. Liquefaction effects on buildings were observed in several areas of İskenderun, predominantly in areas of reclaimed land and near historic shorelines. Liquefaction-induced building settlements were particularly concentrated in the Çay District, which is almost entirely reclaimed land. Liquefaction-induced ground and building settlements were either marginal or not apparent in areas away from the historical shorelines. Building settlement and ground deformation were documented at 26 buildings in İskenderun through lidar scans and laser-level hand measurements. Liquefaction-induced building settlements ranged from 0 to 740 mm. Building-ground interactions were evident from hogging ground deformations, including cases where buildings deformed nearby ground and damaged nearby buildings, and sagging buildings. Historic land development affected the spatial extent of observed liquefaction-induced building damage. Representative liquefaction-induced building settlement and building interaction case histories are discussed and key insights are shared. 
    more » « less