skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The recovery of the deep biosphere at the Chicxulub impact crater
The Chicxulub crater, Mexico, is the site of the asteroid impact that led to the end-Cretaceous mass extinction. While impact events are known to be able to cause severe disruption to surface-dwelling organisms, the effects of such catastrophic perturbations on the deep biosphere are not known. Deep ocean drilling into the peak ring of the Chicxulub impact crater (IODP expedition 364) in 2016 allowed us to study the modern deep biosphere within the (a) high-porosity melt-bearing impact breccia/suevite (617-740 mbsf) emplaced within a day or so of the Cenozoic, (b) the overlying low porosity post-impact marine Cenozoic carbonates (504-617mbsf), and the impacted and fractured granitic basement (740-1334 mbsf). The microbial biomass (~10 cells/g wet weight) was highest in the upper suevite, in underlying non-granitic subvolcanic pre-impact basanite, and at the intercalation of suevite and impact melt rock. Pre-impact sterile conditions of the uplifted granitic basement rocks and mineralogical evidence of impact-induced sterilization suggest that the basement rocks have only been amenable to microbial colonization for less than 66 Myr. Enrichments at in situ 50-60 °C show the presence of heterotrophic lifestyles in the suevite and bacterial sulfate reduction extending into the top of the granitic basement. Cultivation-independent 16S diversity profiling revealed the presence of heterotrophic (fermentative) as well as autotrophic C-fixing thermophilic bacteria in the organic-rich (up to 4 wt % total organic carbon; TOC) Cenozoic sediments. The organic-lean suevite (< 0.1% TOC) showed the unique presence of sequences related to thermophilic Synechococcus (cyanobacteria) and S-oxidizing green sulfur bacteria (chlorobi), and Chloroflexi often associated with organic-poor deep-sea sediments. Alphaproteobacteria, predominated in the upper part of the granitic basement (<1000 mbsf), while putative manganeseoxidising Bacilli (Firmicutes) predominated in the melt-rich granitic basement (>1200 mbsf). Our data suggest that the catastrophe that led to the end-Cretaceous mass extinction caused geological disruption and recolonization of microbial life in the deep subsurface biosphere at the Chicxulub impact site.  more » « less
Award ID(s):
1737199
PAR ID:
10108665
Author(s) / Creator(s):
Date Published:
Journal Name:
American Geophysical Union Fall Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We report on the effect of the end-Cretaceous impact event on the present-day deep microbial biosphere at the impact site. IODP-ICDP Expedition 364 drilled into the peak ring of the Chicxulub crater, México, allowing us to investigate the microbial communities within this structure. Increased cell biomass was found in the impact suevite, which was deposited within the first few hours of the Cenozoic, demonstrating that the impact produced a new lithological horizon that caused a long-term improvement in deep subsurface colonization potential. In the biologically impoverished granitic rocks, we observed increased cell abundances at impact-induced geological interfaces, that can be attributed to the nutritionally diverse substrates and/or elevated fluid flow. 16S rRNA gene amplicon sequencing revealed taxonomically distinct microbial communities in each crater lithology. These observations show that the impact caused geological deformation that continues to shape the deep subsurface biosphere at Chicxulub in the present day. 
    more » « less
  2. null (Ed.)
    The Chicxulub impact crater in Mexico is unique. It is the only known terrestrial impact structure that has been directly linked to a mass extinction event and the only terrestrial impact with a global ejecta layer. Of the three largest impact structures on Earth, Chicxulub is the best preserved. Chicxulub is also the only known terrestrial impact structure with an intact, unequivocal topographic “peak ring.” Chicxulub’s role in the Cretaceous/Paleogene (K-Pg) mass extinction and its exceptional state of preservation make it an important natural laboratory for the study of both large impact crater formation on Earth and other planets and the effects of large impacts on Earth’s environment and ecology. Our understanding of the impact process is far from complete, and despite more than 30 y of intense debate, we are still striving to answer the question as to why this impact was so catastrophic. International Ocean Discovery Program (IODP) Expedition 364 proposes to core through the peak ring of the Chicxulub impact crater to investigate (1) the nature and formational mechanism of peak rings, (2) how rocks are weakened during large impacts, (3) the nature and extent of postimpact hydrothermal circulation, (4) the deep biosphere and habitability of the peak ring, and (5) the recovery of life in a sterile zone. Of additional interest is the transition through a rare midlatitude record of the Paleocene/Eocene Thermal Maximum (PETM); the composition and character of impact breccias, melt rocks, and peak-ring rocks; the sedimentology and stratigraphy of the Cenozoic sequence; and any observations from the core that would help us constrain the volume of dust and climatically active gases released into the stratosphere by this impact. Petrophysical property measurements on the core and wireline logs will be used to calibrate geophysical models, including seismic reflection data. Proposed drilling directly contributes to the IODP science plan initiatives (1) Deep Biosphere and the Subseafloor Ocean and (2) Environmental Change, Processes and Effects, in particular the environmental and biological perturbations caused by the Chicxulub impact. Expedition 364 will be implemented as a mission-specific platform expedition to obtain subseabed samples and downhole logging measurements from the peak ring of the Chicxulub impact crater. The expedition aims to core a single borehole as deep as 1500 meters below seafloor (mbsf) to recover rock cores from above and into the Chicxulub impact crater preserved under the Yucatán continental shelf. 
    more » « less
  3. Highly expanded Cretaceous–Paleogene (K-Pg) boundary section from the Chicxulub peak ring, recovered by International Ocean Discovery Program (IODP)–International Continental Scientific Drilling Program (ICDP) Expedition 364, provides an unprecedented window into the immediate aftermath of the impact. Site M0077 includes ∼130 m of impact melt rock and suevite deposited the first day of the Cenozoic covered by <1 m of micrite-rich carbonate deposited over subsequent weeks to years. We present an interpreted series of events based on analyses of these drill cores. Within minutes of the impact, centrally uplifted basement rock collapsed outward to form a peak ring capped in melt rock. Within tens of minutes, the peak ring was covered in ∼40 m of brecciated impact melt rock and coarse-grained suevite, including clasts possibly generated by melt–water interactions during ocean resurge. Within an hour, resurge crested the peak ring, depositing a 10-m-thick layer of suevite with increased particle roundness and sorting. Within hours, the full resurge deposit formed through settling and seiches, resulting in an 80-m-thick fining-upward, sorted suevite in the flooded crater. Within a day, the reflected rim-wave tsunami reached the crater, depositing a cross-bedded sand-to-fine gravel layer enriched in polycyclic aromatic hydrocarbons overlain by charcoal fragments. Generation of a deep crater open to the ocean allowed rapid flooding and sediment accumulation rates among the highest known in the geologic record. The high-resolution section provides insight into the impact environmental effects, including charcoal as evidence for impact-induced wildfires and a paucity of sulfur-rich evaporites from the target supporting rapid global cooling and darkness as extinction mechanisms. 
    more » « less
  4. null (Ed.)
    The Chicxulub impact crater, on the Yucatán Peninsula of México, is unique. It is the only known terrestrial impact structure that has been directly linked to a mass extinction event and the only terrestrial impact with a global ejecta layer. Of the three largest impact structures on Earth, Chicxulub is the best preserved. Chicxulub is also the only known terrestrial impact structure with an intact, unequivocal topographic peak ring. Chicxulub’s role in the Cretaceous/Paleogene (K-Pg) mass extinction and its exceptional state of preservation make it an important natural laboratory for the study of both large impact crater formation on Earth and other planets and the effects of large impacts on the Earth’s environment and ecology. Our understanding of the impact process is far from complete, and despite more than 30 years of intense debate, we are still striving to answer the question as to why this impact was so catastrophic. During International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Program (ICDP) Expedition 364, Paleogene sedimentary rocks and lithologies that make up the Chicxulub peak ring were cored to investigate (1) the nature and formational mechanism of peak rings, (2) how rocks are weakened during large impacts, (3) the nature and extent of post-impact hydrothermal circulation, (4) the deep biosphere and habitability of the peak ring, and (5) the recovery of life in a sterile zone. Other key targets included sampling the transition through a rare midlatitude Paleogene sedimentary succession that might include Eocene and Paleocene hyperthermals and/or the Paleocene/Eocene Thermal Maximum (PETM); the composition and character of suevite, impact melt rock, and basement rocks in the peak ring; the sedimentology and stratigraphy of the Paleocene–Eocene Chicxulub impact basin infill; the geo- and thermochronology of the rocks forming the peak ring; and any observations from the core that may help constrain the volume of dust and climatically active gases released into the stratosphere by this impact. Petrophysical properties measurements on the core and wireline logs acquired during Expedition 364 will be used to calibrate geophysical models, including seismic reflection and potential field data, and the integration of all the data will calibrate models for impact crater formation and environmental effects. The drilling directly contributes to IODP Science Plan goals: Climate and Ocean Change: How does Earth’s climate system respond to elevated levels of atmospheric CO2? How resilient is the ocean to chemical perturbations? The Chicxulub impact represents an external forcing event that caused a 75% species level mass extinction. The impact basin may also record key hyperthermals within the Paleogene. Biosphere Frontiers: What are the origin, composition, and global significance of subseafloor communities? What are the limits of life in the subseafloor? How sensitive are ecosystems and biodiversity to environmental change? Impact craters can create habitats for subsurface life, and Chicxulub may provide information on potential habitats for life, including extremophiles, on the early Earth and other planetary bodies. Paleontological and geochemical studies at ground zero will document how large impacts affect ecosystems and biodiversity. Earth Connections/Earth in Motion: What mechanisms control the occurrence of destructive earthquakes, landslides, and tsunami? Drilling into the uplifted rocks that form the peak ring will be used to groundtruth numerical simulations and model impact-generated tsunami, and deposits on top of the peak ring and around the Gulf of México will inform us about earthquakes, landslides, and tsunami generated by Chicxulub. These data will collectively help us understand how impact processes are recorded in the geologic record and their potential hazards. IODP Expedition 364 was a Mission Specific Platform expedition designed to obtain subseabed samples and downhole logging measurements from the post-impact sedimentary succession and the peak ring of the Chicxulub impact crater. A single borehole (Hole M0077A) was drilled into the Chicxulub impact crater on the Yucatán continental shelf, recovering core from 505.70 to 1334.69 meters below seafloor (mbsf) with ~99% core recovery. Downhole logs were acquired for the entire depth of the borehole. 
    more » « less
  5. IODP/ICDP Expedition 364 recovered ~829 m of core at Site M0077 including ~110 m of post-impact, (hemi)pelagic Paleogene sedimentary rocks overlying the Chicxulub impact crater peak ring formed from suevite, melt rock, and granitic basement. The transition between suevite and Paleocene limestone (Unit 1F) is a remarkable fining upward package of gravel to sand-sized suevite (Unit 2A) overlain by the laminated carbonate-rich Unit 1G that records deposition of fine-grained material post-impact and contains a mix of Late Cretaceous and earliest Danian taxa. This study concentrates on the overlying Unit 1F. The ichnofabric index (ii, 1-6 indicating no bioturbation to complete homogenization), provides a semiquantitative estimate of burrow density to help assess the return of life to the crater. Unit 1F is ~10 m thick with a sharp contact at the base of a green claystone (ii 2) that overlies Unit 1G. It consists of cm-dm interbedded blue-gray marlstone (ii 2) grading upward into gray to blue-gray wacke/packstone (ii 3-5). Contacts between facies are mostly gradational due to burrowing. The upper 3 m of the unit is a yellow-brown burrowed packstone (ii 4) intercalated with gray marlstone (ii 2). The uppermost 7.5 cm is calcite cemented with 1 cm wide burrows (ii 3-4) and fine to coarse sand size clasts including foraminifera. The upper surface of the unit is a hardground with an ~2 Myr unconformity overlain by Eocene rocks. The first well-defined burrows occur in the upper 30 cm of Unit 1G. Unequivocal burrows (ii 2) that disturb sedimentary facies occur in overlying Unit 1F with values of 3-5 recorded in the overlying 10 cm indicating significant disruption of primary sedimentary structures. The iis in Unit 1F vary between 2 and 5 with rare laminated intervals without bioturbation (ii 1). Values of ii correlate well with facies changes, i.e. marlstones display lower iis than more carbonate-rich facies, implying a depth and/or redox control on burrower distribution. The ii data indicate that burrowers were re-established in the crater before the end of deposition of Unit 1G. The lowest Danian zone Pα is documented in the lowermost part of Unit 1F. Trace makers were thus active by the earliest Danian with an increase in abundance and diversity during the lower Danian, indicating a rapid and continuous return of benthic life to the crater. 
    more » « less