skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The first day of the Cenozoic
Highly expanded Cretaceous–Paleogene (K-Pg) boundary section from the Chicxulub peak ring, recovered by International Ocean Discovery Program (IODP)–International Continental Scientific Drilling Program (ICDP) Expedition 364, provides an unprecedented window into the immediate aftermath of the impact. Site M0077 includes ∼130 m of impact melt rock and suevite deposited the first day of the Cenozoic covered by <1 m of micrite-rich carbonate deposited over subsequent weeks to years. We present an interpreted series of events based on analyses of these drill cores. Within minutes of the impact, centrally uplifted basement rock collapsed outward to form a peak ring capped in melt rock. Within tens of minutes, the peak ring was covered in ∼40 m of brecciated impact melt rock and coarse-grained suevite, including clasts possibly generated by melt–water interactions during ocean resurge. Within an hour, resurge crested the peak ring, depositing a 10-m-thick layer of suevite with increased particle roundness and sorting. Within hours, the full resurge deposit formed through settling and seiches, resulting in an 80-m-thick fining-upward, sorted suevite in the flooded crater. Within a day, the reflected rim-wave tsunami reached the crater, depositing a cross-bedded sand-to-fine gravel layer enriched in polycyclic aromatic hydrocarbons overlain by charcoal fragments. Generation of a deep crater open to the ocean allowed rapid flooding and sediment accumulation rates among the highest known in the geologic record. The high-resolution section provides insight into the impact environmental effects, including charcoal as evidence for impact-induced wildfires and a paucity of sulfur-rich evaporites from the target supporting rapid global cooling and darkness as extinction mechanisms.  more » « less
Award ID(s):
1737199 1737087 1737351 1737037
PAR ID:
10160774
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
39
ISSN:
0027-8424
Page Range / eLocation ID:
19342 to 19351
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This study presents a new classification of a ∼100-m-thick crater suevite sequence in the recent International Ocean Discovery Program (IODP)-International Continental Scientific Drilling Program (ICDP) Expedition 364 Hole M0077A drill core to better understand the formation of suevite on top of the Chicxulub peak ring. We provide an extensive data set for this succession that consists of whole-rock major and trace element compositional data (n = 212) and petrographic data supported by digital image analysis. The suevite sequence is subdivided into three units that are distinct in their petrography, geochemistry, and sedimentology, from base to top: the ∼5.6-m-thick non-graded suevite unit, the ∼89-m-thick graded suevite unit, and the ∼3.5-m-thick bedded suevite unit. All of these suevite units have isolated Cretaceous planktic foraminifera within their clastic groundmass, which suggests that marine processes were responsible for the deposition of the entire M0077A suevite sequence. The most likely scenario describes that the first ocean water that reached the northern peak ring region entered through a N-NE gap in the Chicxulub outer rim. We estimate that this ocean water arrived at Site M0077 within 30 minutes after the impact and was relatively poor in rock debris. This water caused intense quench fragmentation when it interacted with the underlying hot impact melt rock, and this resulted in the emplacement of the ∼5.6-m-thick hyaloclastite-like, non-graded suevite unit. In the following hours, the impact structure was flooded by an ocean resurge rich in rock debris, which caused the phreatomagmatic processes to stop and the ∼89-m-thick graded suevite unit to be deposited. We interpret that after the energy of the resurge slowly dissipated, oscillating seiche waves took over the sedimentary regime and formed the ∼3.5-m-thick bedded suevite unit. The final stages of the formation of the impactite sequence (estimated to be <20 years after impact) were dominated by resuspension and slow atmospheric settling, including the final deposition of Chicxulub impactor debris. Cumulatively, the Site M0077 suevite sequence from the Chicxulub impact site preserved a high-resolution record that provides an unprecedented window for unravelling the dynamics and timing of proximal marine cratering processes in the direct aftermath of a large impact event. 
    more » « less
  2. null (Ed.)
    Abstract Core from Hole M0077 from IODP/ICDP Expedition 364 provides unprecedented evidence for the physical processes in effect during the interaction of impact melt with rock-debris-laden seawater, following a large meteorite impact into waters of the Yucatán shelf. Evidence for this interaction is based on petrographic, microstructural and chemical examination of the 46.37-m-thick impact melt rock sequence, which overlies shocked granitoid target rock of the peak ring of the Chicxulub impact structure. The melt rock sequence consists of two visually distinct phases, one is black and the other is green in colour. The black phase is aphanitic and trachyandesitic in composition and similar to melt rock from other sites within the impact structure. The green phase consists chiefly of clay minerals and sparitic calcite, which likely formed from a solidified water–rock debris mixture under hydrothermal conditions. We suggest that the layering and internal structure of the melt rock sequence resulted from a single process, i.e., violent contact of initially superheated silicate impact melt with the ocean resurge-induced water–rock mixture overriding the impact melt. Differences in density, temperature, viscosity, and velocity of this mixture and impact melt triggered Kelvin–Helmholtz and Rayleigh–Taylor instabilities at their phase boundary. As a consequence, shearing at the boundary perturbed and, thus, mingled both immiscible phases, and was accompanied by phreatomagmatic processes. These processes led to the brecciation at the top of the impact melt rock sequence. Quenching of this breccia by the seawater prevented reworking of the solidified breccia layers upon subsequent deposition of suevite. Solid-state deformation, notably in the uppermost brecciated impact melt rock layers, attests to long-term gravitational settling of the peak ring. 
    more » « less
  3. The Chicxulub crater, Mexico, is the site of the asteroid impact that led to the end-Cretaceous mass extinction. While impact events are known to be able to cause severe disruption to surface-dwelling organisms, the effects of such catastrophic perturbations on the deep biosphere are not known. Deep ocean drilling into the peak ring of the Chicxulub impact crater (IODP expedition 364) in 2016 allowed us to study the modern deep biosphere within the (a) high-porosity melt-bearing impact breccia/suevite (617-740 mbsf) emplaced within a day or so of the Cenozoic, (b) the overlying low porosity post-impact marine Cenozoic carbonates (504-617mbsf), and the impacted and fractured granitic basement (740-1334 mbsf). The microbial biomass (~10 cells/g wet weight) was highest in the upper suevite, in underlying non-granitic subvolcanic pre-impact basanite, and at the intercalation of suevite and impact melt rock. Pre-impact sterile conditions of the uplifted granitic basement rocks and mineralogical evidence of impact-induced sterilization suggest that the basement rocks have only been amenable to microbial colonization for less than 66 Myr. Enrichments at in situ 50-60 °C show the presence of heterotrophic lifestyles in the suevite and bacterial sulfate reduction extending into the top of the granitic basement. Cultivation-independent 16S diversity profiling revealed the presence of heterotrophic (fermentative) as well as autotrophic C-fixing thermophilic bacteria in the organic-rich (up to 4 wt % total organic carbon; TOC) Cenozoic sediments. The organic-lean suevite (< 0.1% TOC) showed the unique presence of sequences related to thermophilic Synechococcus (cyanobacteria) and S-oxidizing green sulfur bacteria (chlorobi), and Chloroflexi often associated with organic-poor deep-sea sediments. Alphaproteobacteria, predominated in the upper part of the granitic basement (<1000 mbsf), while putative manganeseoxidising Bacilli (Firmicutes) predominated in the melt-rich granitic basement (>1200 mbsf). Our data suggest that the catastrophe that led to the end-Cretaceous mass extinction caused geological disruption and recolonization of microbial life in the deep subsurface biosphere at the Chicxulub impact site. 
    more » « less
  4. IODP/ICDP Expedition 364 recovered ~829 m of core at Site M0077 including ~110 m of post-impact, (hemi)pelagic Paleogene sedimentary rocks overlying the Chicxulub impact crater peak ring formed from suevite, melt rock, and granitic basement. The transition between suevite and Paleocene limestone (Unit 1F) is a remarkable fining upward package of gravel to sand-sized suevite (Unit 2A) overlain by the laminated carbonate-rich Unit 1G that records deposition of fine-grained material post-impact and contains a mix of Late Cretaceous and earliest Danian taxa. This study concentrates on the overlying Unit 1F. The ichnofabric index (ii, 1-6 indicating no bioturbation to complete homogenization), provides a semiquantitative estimate of burrow density to help assess the return of life to the crater. Unit 1F is ~10 m thick with a sharp contact at the base of a green claystone (ii 2) that overlies Unit 1G. It consists of cm-dm interbedded blue-gray marlstone (ii 2) grading upward into gray to blue-gray wacke/packstone (ii 3-5). Contacts between facies are mostly gradational due to burrowing. The upper 3 m of the unit is a yellow-brown burrowed packstone (ii 4) intercalated with gray marlstone (ii 2). The uppermost 7.5 cm is calcite cemented with 1 cm wide burrows (ii 3-4) and fine to coarse sand size clasts including foraminifera. The upper surface of the unit is a hardground with an ~2 Myr unconformity overlain by Eocene rocks. The first well-defined burrows occur in the upper 30 cm of Unit 1G. Unequivocal burrows (ii 2) that disturb sedimentary facies occur in overlying Unit 1F with values of 3-5 recorded in the overlying 10 cm indicating significant disruption of primary sedimentary structures. The iis in Unit 1F vary between 2 and 5 with rare laminated intervals without bioturbation (ii 1). Values of ii correlate well with facies changes, i.e. marlstones display lower iis than more carbonate-rich facies, implying a depth and/or redox control on burrower distribution. The ii data indicate that burrowers were re-established in the crater before the end of deposition of Unit 1G. The lowest Danian zone Pα is documented in the lowermost part of Unit 1F. Trace makers were thus active by the earliest Danian with an increase in abundance and diversity during the lower Danian, indicating a rapid and continuous return of benthic life to the crater. 
    more » « less
  5. null (Ed.)
    The Chicxulub impact crater, on the Yucatán Peninsula of México, is unique. It is the only known terrestrial impact structure that has been directly linked to a mass extinction event and the only terrestrial impact with a global ejecta layer. Of the three largest impact structures on Earth, Chicxulub is the best preserved. Chicxulub is also the only known terrestrial impact structure with an intact, unequivocal topographic peak ring. Chicxulub’s role in the Cretaceous/Paleogene (K-Pg) mass extinction and its exceptional state of preservation make it an important natural laboratory for the study of both large impact crater formation on Earth and other planets and the effects of large impacts on the Earth’s environment and ecology. Our understanding of the impact process is far from complete, and despite more than 30 years of intense debate, we are still striving to answer the question as to why this impact was so catastrophic. During International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Program (ICDP) Expedition 364, Paleogene sedimentary rocks and lithologies that make up the Chicxulub peak ring were cored to investigate (1) the nature and formational mechanism of peak rings, (2) how rocks are weakened during large impacts, (3) the nature and extent of post-impact hydrothermal circulation, (4) the deep biosphere and habitability of the peak ring, and (5) the recovery of life in a sterile zone. Other key targets included sampling the transition through a rare midlatitude Paleogene sedimentary succession that might include Eocene and Paleocene hyperthermals and/or the Paleocene/Eocene Thermal Maximum (PETM); the composition and character of suevite, impact melt rock, and basement rocks in the peak ring; the sedimentology and stratigraphy of the Paleocene–Eocene Chicxulub impact basin infill; the geo- and thermochronology of the rocks forming the peak ring; and any observations from the core that may help constrain the volume of dust and climatically active gases released into the stratosphere by this impact. Petrophysical properties measurements on the core and wireline logs acquired during Expedition 364 will be used to calibrate geophysical models, including seismic reflection and potential field data, and the integration of all the data will calibrate models for impact crater formation and environmental effects. The drilling directly contributes to IODP Science Plan goals: Climate and Ocean Change: How does Earth’s climate system respond to elevated levels of atmospheric CO2? How resilient is the ocean to chemical perturbations? The Chicxulub impact represents an external forcing event that caused a 75% species level mass extinction. The impact basin may also record key hyperthermals within the Paleogene. Biosphere Frontiers: What are the origin, composition, and global significance of subseafloor communities? What are the limits of life in the subseafloor? How sensitive are ecosystems and biodiversity to environmental change? Impact craters can create habitats for subsurface life, and Chicxulub may provide information on potential habitats for life, including extremophiles, on the early Earth and other planetary bodies. Paleontological and geochemical studies at ground zero will document how large impacts affect ecosystems and biodiversity. Earth Connections/Earth in Motion: What mechanisms control the occurrence of destructive earthquakes, landslides, and tsunami? Drilling into the uplifted rocks that form the peak ring will be used to groundtruth numerical simulations and model impact-generated tsunami, and deposits on top of the peak ring and around the Gulf of México will inform us about earthquakes, landslides, and tsunami generated by Chicxulub. These data will collectively help us understand how impact processes are recorded in the geologic record and their potential hazards. IODP Expedition 364 was a Mission Specific Platform expedition designed to obtain subseabed samples and downhole logging measurements from the post-impact sedimentary succession and the peak ring of the Chicxulub impact crater. A single borehole (Hole M0077A) was drilled into the Chicxulub impact crater on the Yucatán continental shelf, recovering core from 505.70 to 1334.69 meters below seafloor (mbsf) with ~99% core recovery. Downhole logs were acquired for the entire depth of the borehole. 
    more » « less