skip to main content


Title: Photonic crystal cavities with germanium vacancy color centers in diamond (Conference Presentation)
Development of quantum information processing requires realization of solid state structures able to manipulate light or matter quantum bits. One of the promising candidates for been active elements of such solid-state platform are color centers in diamond. The most famous nitrogen-vacancy color center has number of attractive features and found a lot of applications in sensing and imaging. Still, it has number of considerable disadvantages, among which it sensitivity to the surface damages and thus its incompatibility with nanostructures. On another side implementation of nano- and micro- structures enabled considerable progress in manipulation of light quanta. In particular photonic crystal cavities allowed to realize strong coupling of cavity and spin system. This led to demonstration of efficient light collection and realization of simple quantum gates with artificial or real atoms. Novel color centers such as silicon-vacancy or germanium-vacancy color center due to inversion symmetry of the electron structure are not sensitive to the surface damages and presence of surface nearby. Thus, those are perfect candidates for been combined with photonic crystal structures. Novel technologies enabled growing of the nanodiamonds of ultra-small size having well-defined color center inside. Along with techniques to position those precisely on the nano- and micro structures these achievements opened opportunity to integrate high-fines photonic-crystal cavities with the germanium-vacancy containing nanocrystals thus forming fully solid-state platform for quantum manipulation of light. In my talk I will describe our progress towards realization of this ambitious goal  more » « less
Award ID(s):
1820930
NSF-PAR ID:
10108724
Author(s) / Creator(s):
Date Published:
Journal Name:
Proc. SPIE
Volume:
10904
Page Range / eLocation ID:
1090411
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Silicon carbide is evolving as a prominent solid-state platform for the realization of quantum information processing hardware. Angle-etched nanodevices are emerging as a solution to photonic integration in bulk substrates where color centers are best defined. We model triangular cross-section waveguides and photonic crystal cavities using Finite-Difference Time-Domain and Finite-Difference Eigensolver approaches. We analyze optimal color center positioning within the modes of these devices and provide estimates on achievable Purcell enhancement in nanocavities with applications in quantum communications. Using open quantum system modeling, we explore emitter-cavity interactions of multiple non-identical color centers coupled to both a single cavity and a photonic crystal molecule in SiC. We observe polariton and subradiant state formation in the cavity-protected regime of cavity quantum electrodynamics applicable in quantum simulation. 
    more » « less
  2. Abstract

    STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in chemical dynamics in mind. That is why the original paper of 1990 was published inThe Journal of Chemical Physics. However, from about the year 2000, the unique capabilities of STIRAP and its robustness with respect to small variations in some experimental parameters stimulated many researchers to apply the scheme to a variety of other fields of physics. The successes of these efforts are documented in this collection of articles. In Part A the experimental success of STIRAP in manipulating or controlling molecules, photons, ions or even quantum systems in a solid-state environment is documented. After a brief introduction to the basic physics of STIRAP, the central role of the method in the formation of ultracold molecules is discussed, followed by a presentation of how precision experiments (measurement of the upper limit of the electric dipole moment of the electron or detecting the consequences of parity violation in chiral molecules) or chemical dynamics studies at ultralow temperatures benefit from STIRAP. Next comes the STIRAP-based control of photons in cavities followed by a group of three contributions which highlight the potential of the STIRAP concept in classical physics by presenting data on the transfer of waves (photonic, magnonic and phononic) between respective waveguides. The works on ions or ion strings discuss options for applications, e.g. in quantum information. Finally, the success of STIRAP in the controlled manipulation of quantum states in solid-state systems, which are usually hostile towards coherent processes, is presented, dealing with data storage in rare-earth ion doped crystals and in nitrogen vacancy (NV) centers or even in superconducting quantum circuits. The works on ions and those involving solid-state systems emphasize the relevance of the results for quantum information protocols. Part B deals with theoretical work, including further concepts relevant to quantum information or invoking STIRAP for the manipulation of matter waves. The subsequent articles discuss the experiments underway to demonstrate the potential of STIRAP for populating otherwise inaccessible high-lying Rydberg states of molecules, or controlling and cooling the translational motion of particles in a molecular beam or the polarization of angular-momentum states. The series of articles concludes with a more speculative application of STIRAP in nuclear physics, which, if suitable radiation fields become available, could lead to spectacular results.

     
    more » « less
  3. Robust spin-photon interfaces in solids are essential components in quantum networking and sensing technologies. Ideally, these interfaces combine a long-lived spin memory, coherent optical transitions, fast and high-fidelity spin manipulation, and straightforward device integration and scaling. The tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K. However, the SnV spin lacks efficient microwave control, and its spin coherence degrades with higher temperature. In this work, we introduce a new platform that overcomes these challenges—SnV centers in uniformly strained thin diamond membranes. The controlled generation of crystal strain introduces orbital mixing that allows microwave control of the spin state with 99.36(9)% gate fidelity and spin coherence protection beyond a millisecond. Moreover, the presence of crystal strain suppresses temperature-dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223(10) μs at 4 K, a widely accessible temperature in common cryogenic systems. Critically, the coherence of optical transitions is unaffected by the elevated temperature, exhibiting nearly lifetime-limited optical linewidths. Combined with the compatibility of diamond membranes with device integration, the demonstrated platform is an ideal spin-photon interface for future quantum technologies. 
    more » « less
  4. Color centers in wide bandgap semiconductors are prominent candidates for solid-state quantum technologies due to their attractive properties including optical interfacing, long coherence times, and spin–photon and spin–spin entanglement, as well as the potential for scalability. Silicon carbide color centers integrated into photonic devices span a wide range of applications in quantum information processing in a material platform with quantum-grade wafer availability and advanced processing capabilities. Recent progress in emitter generation and characterization, nanofabrication, device design, and quantum optical studies has amplified the scientific interest in this platform. We provide a conceptual and quantitative analysis of the role of silicon carbide integrated photonics in three key application areas: quantum networking, simulation, and computing.

     
    more » « less
  5. A central challenge in quantum networking is transferring quantum states between different physical modalities, such as between flying photonic qubits and stationary quantum memories. One implementation entails using spin–photon interfaces that combine solid-state spin qubits, such as color centers in diamond, with photonic nanostructures. However, while high-fidelity spin–photon interactions have been demonstrated on isolated devices, building practical quantum repeaters requires scaling to large numbers of interfaces yet to be realized. Here, we demonstrate integration of nanophotonic cavities containing tin-vacancy (SnV) centers in a photonic integrated circuit (PIC). Out of a six-channel quantum microchiplet (QMC), we find four coupled SnV-cavity devices with an average Purcell factor of ∼7. Based on system analyses and numerical simulations, we find with near-term improvements this multiplexed architecture can enable high-fidelity quantum state transfer, paving the way toward building large-scale quantum repeaters.

     
    more » « less