skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifying Crisis Response Communities in Online Social Networks for Compound Disasters: The Case of Hurricane Laura and COVID-19
Online social networks allow different agencies and the public to interact and share the underlying risks and protective actions during major disasters. This study revealed such crisis communication patterns during Hurricane Laura compounded by the COVID-19 pandemic. Hurricane Laura was one of the strongest (Category 4) hurricanes on record to make landfall in Cameron, Louisiana, U.S. Using an application programming interface (API), this study utilizes large-scale social media data obtained from Twitter through the recently released academic track that provides complete and unbiased observations. The data captured publicly available tweets shared by active Twitter users from the vulnerable areas threatened by Hurricane Laura. Online social networks were based on Twitter’s user influence feature (i.e., mentions or tags) that allows notification of other users while posting a tweet. Using network science theories and advanced community detection algorithms, the study split these networks into 21 components of various size, the largest of which contained eight well-defined communities. Several natural language processing techniques (i.e., word clouds, bigrams, topic modeling) were applied to the tweets shared by the users in these communities to observe their risk-taking or risk-averse behavior during a major compounding crisis. Social media accounts of local news media, radio, universities, and popular sports pages were among those which heavily involved and closely interacted with local residents. In contrast, emergency management and planning units in the area engaged less with the public. The findings of this study provide novel insights into the design of efficient social media communication guidelines to respond better in future disasters.  more » « less
Award ID(s):
2229439
PAR ID:
10459062
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Transportation Research Record: Journal of the Transportation Research Board
ISSN:
0361-1981
Page Range / eLocation ID:
036119812311681
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As the internet and social media continue to become increasingly used for sharing break- ing news and important updates, it is with great motivation to study the behaviors of online users during crisis events. One of the biggest issues with obtaining information online is the veracity of such content. Given this vulnerability, misinformation becomes a very danger- ous and real threat when spread online. This study investigates misinformation debunking efforts and fills the research gap on cross-platform information sharing when misinforma- tion is spread during disasters. The false rumor “immigration status is checked at shelters” spread in both Hurricane Harvey and Hurricane Irma in 2017 and was analyzed in this paper based on a collection of 12,900 tweets. By studying the rumor control efforts made by thousands of accounts, we found that Twitter users respond and interact the most with tweets from verified Twitter accounts, and especially government organizations. Results on sourcing analysis show that the majority of Twitter users who utilize URLs in their post- ings are employing the information in the URLs to help debunk the false rumor. The most frequently cited information comes from news agencies when analyzing both URLs and domains. This paper provides novel insights into rumor control efforts made through social media during natural disasters and also the information sourcing and sharing behaviors that users exhibit during the debunking of false rumors. 
    more » « less
  2. Abstract Social media has been increasingly utilized to spread breaking news and risk communications during disasters of all magnitudes. Unfortunately, due to the unmoderated nature of social media platforms such as Twitter, rumors and misinformation are able to propagate widely. Given this, a surfeit of research has studied false rumor diffusion on Twitter, especially during natural disasters. Within this domain, studies have also focused on the misinformation control efforts from government organizations and other major agencies. A prodigious gap in research exists in studying the monitoring of misinformation on social media platforms in times of disasters and other crisis events. Such studies would offer organizations and agencies new tools and ideologies to monitor misinformation on platforms such as Twitter, and make informed decisions on whether or not to use their resources in order to debunk. In this work, we fill the research gap by developing a machine learning framework to predict the veracity of tweets that are spread during crisis events. The tweets are tracked based on the veracity of their content as either true, false, or neutral. We conduct four separate studies, and the results suggest that our framework is capable of tracking multiple cases of misinformation simultaneously, with scores exceeding 87%. In the case of tracking a single case of misinformation, our framework reaches an score of 83%. We collect and drive the algorithms with 15,952 misinformation‐related tweets from the Boston Marathon bombing (2013), Manchester Arena bombing (2017), Hurricane Harvey (2017), Hurricane Irma (2017), and the Hawaii ballistic missile false alert (2018). This article provides novel insights on how to efficiently monitor misinformation that is spread during disasters. 
    more » « less
  3. In an era increasingly affected by natural and human-caused disasters, the role of social media in disaster communication has become ever more critical. Despite substantial research on social media use during crises, a significant gap remains in detecting crisis-related misinformation. Detecting deviations in information is fundamental for identifying and curbing the spread of misinformation. This study introduces a novel Information Switching Pattern Model to identify dynamic shifts in perspectives among users who mention each other in crisisrelated narratives on social media. These shifts serve as evidence of crisis misinformation affecting user-mention network interactions. The study utilizes advanced natural language processing, network science, and census data to analyze geotagged tweets related to compound disaster events in Oklahoma in 2022. The impact of misinformation is revealed by distinct engagement patterns among various user types, such as bots, private organizations, non-profits, government agencies, and news media throughout different disaster stages. These patterns show how different disasters influence public sentiment, highlight the heightened vulnerability of mobile home communities, and underscore the importance of education and transportation access in crisis response. Understanding these engagement patterns is crucial for detecting misinformation and leveraging social media as an effective tool for risk communication during disasters 
    more » « less
  4. Risk perception and risk averting behaviors of public agencies in the emergence and spread of COVID-19 can be retrieved through online social media (Twitter), and such interactions can be echoed in other information outlets. This study collected time-sensitive online social media data and analyzed patterns of health risk communication of public health and emergency agencies in the emergence and spread of novel coronavirus using data-driven methods. The major focus is toward understanding how policy-making agencies communicate risk and response information through social media during a pandemic and influence community response—ie, timing of lockdown, timing of reopening, etc.—and disease outbreak indicators—ie, number of confirmed cases and number of deaths. Twitter data of six major public organizations (1,000-4,500 tweets per organization) are collected from February 21, 2020 to June 6, 2020. Several machine learning algorithms, including dynamic topic model and sentiment analysis, are applied over time to identify the topic dynamics over the specific timeline of the pandemic. Organizations emphasized on various topics—eg, importance of wearing face mask, home quarantine, understanding the symptoms, social distancing and contact tracing, emerging community transmission, lack of personal protective equipment, COVID-19 testing and medical supplies, effect of tobacco, pandemic stress management, increasing hospitalization rate, upcoming hurricane season, use of convalescent plasma for COVID-19 treatment, maintaining hygiene, and the role of healthcare podcast in different timeline. The findings can benefit emergency management, policymakers, and public health agencies to identify targeted information dissemination policies for public with diverse needs based on how local, federal, and international agencies reacted to COVID-19. 
    more » « less
  5. The way media portray public health problems influences the public’s perception of problems and related solutions. Social media allows users to engage with news and to collectively construct meaning. This paper examined news in comparison to user-generated content related to opioids to understand the role of second-level agenda-setting in public health. We analyzed 162,760 tweets about the opioid crisis, and compared the main topics and their sentiments with 2998 opioid stories from The New York Times online. Evidence from this study suggests that second-level agenda setting on social media is different from the news; public communication about opioids on X/Twitter highlights attributes that are different from those highlighted in the news. The findings suggest that public health communication should strategically utilize social media data, including obtaining consumer insight from personal tweets, listening to diverse views and warning signs from issue tweets, and tuning in to the media for policy trends. 
    more » « less