skip to main content


Title: Hybrid Precoding/Combining Design in mmWaveAmplify-and-Forward MIMO Relay Networks
In this paper, we consider the amplify-and-forward relay networks in mmWave systems and propose a hybrid precoder/combiner design approach. The phase-only RF precoding/ combining matrices are first designed to support multi-stream transmission, where we compensate the phase for the eigenmodes of the channel. Then, the baseband precoders/combiners are performed to achieve the maximum mutual information. Based on the data processing inequality for the mutual information, we first jointly design the baseband source and relay nodes to maximize the mutual information before the destination baseband receiver. The proposed low-complexity iterative algorithm for the source and relay nodes is based on the equivalence between mutual information maximization and the weighted MMSE. After we obtain the optimal precoder and combiner for the source and relay nodes, we implement the MMSE-SIC filter at the baseband receiver to keep the mutual information unchanged, thus obtaining the optimal mutual information for the whole relay system. Simulation results show that our algorithm achieves better performance with lower complexity compared with other algorithms in the literature.  more » « less
Award ID(s):
1642536
NSF-PAR ID:
10108975
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Conference on Communications
ISSN:
1938-1883
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we study the problem of joint power control and beamforming design for simultaneous wireless information and power transfer (SWIPT) in an amplify-and-forward (AF) based two-way relaying (TWR) network. The considered system model consists of two source nodes and a relay node. Two single-antenna source nodes receive information and energy simultaneously via power splitting (PS) from the signals sent by a multi-antenna relay node. Our objective is to maximize the weighted sum energy at the two source nodes subject to quality of service (QoS) constraints and the transmit power constraints. However, the joint optimization of the relay beamforming matrix, the source transmit power and PS ratio is intractable. To find a closed-form solution of the formulated problem, we decouple the primal problem into two subproblems. In the first problem, we intend to optimize the beamforming vectors for given transmit powers and PS ratio. In the second subproblem, we optimize the remaining parameters with obtained beamformers. It is worth noting that although the corresponding subproblem are nonconvex, the optimal solution of each subproblem can be found by using certain techniques. The iterative optimization algorithm finally converges. Simulation results verify the effectiveness of the proposed joint design. 
    more » « less
  2. Millimeter wave (mmW) communications is viewed as the key enabler of 5G cellular networks due to vast spectrum availability that could boost peak rate and capacity. Due to increased propagation loss in mmW band, transceivers with massive antenna array are required to meet a link budget, but their power consumption and cost become limiting factors for commercial systems. Radio designs based on hybrid digital and analog array architectures and the usage of radio frequency (RF) signal processing via phase shifters have emerged as potential solutions to improve radio energy efficiency and deliver performances close to the conventional digital antenna arrays. In this paper, we provide an overview of the state-of-the-art mmW massive antenna array designs and comparison among three array architectures, namely digital array, partially-connected hybrid array (sub-array), and fully-connected hybrid array. The comparison of performance, power, and area for these three architectures is performed for three representative 5G downlink use cases, which cover a range of pre-beamforming signal-to-noise-ratios (SNR) and multiplexing regimes. This is the first study to comprehensively model and quantitatively analyze all design aspects and criteria including: 1) optimal linear precoder, 2) impact of quantization error in digital-to-analog converter (DAC) and phase shifters, 3) RF signal distribution network, 4) power and area estimation based on state-of-the-art mmW circuits including baseband digital precoding, digital signal distribution network, high-speed DACs, oscillators, mixers, phase shifters, RF signal distribution network, and power amplifiers. Our simulation results show that the fully-digital array architecture is the most power and area efficient compared against optimized designs for sub-array and hybrid array architectures. Our analysis shows that digital array architecture benefits greatly from multi-user multiplexing. The analysis also reveals that sub-array architecture performance is limited by reduced beamforming gain due to array partitioning, while the system bottleneck of the fully-connected hybrid architecture is the excessively complicated and power hungry RF signal distribution network. 
    more » « less
  3. In a time-division duplex (TDD) multiple antenna system, the channel state information (CSI) can be estimated using reverse training. A pilot spoofing attack occurs when during the training phase, an adversary (spoofer) also sends identical training (pilot) signal as that of the legitimate receiver. This contaminates channel estimation and alters the legitimate precoder design, facilitating eavesdropping. A recent approach proposed superimposing a random sequence on the training sequence at the legitimate receivers, and then using the minimum description length (MDL) criterion to detect pilot spoofing attack via source enumeration. In this letter, we extend this approach by exploiting temporal subspace properties of the pilot signals in conjunction with the MDL criterion, to determine which pilots are contaminated by a spoofer, and which ones are free of spoofing attack. The identification performance is illustrated via simulations. 
    more » « less
  4. null (Ed.)
    This paper proposes a finite-precision decoding method for low-density parity-check (LDPC) codes that features the three steps of Reconstruction, Computation, and Quantization (RCQ). Unlike Mutual-Information-Maximization Quantized Belief Propagation (MIM-QBP), RCQ can approximate either belief propagation or Min-Sum decoding. MIM-QBP decoders do not work well when the fraction of degree-2 variable nodes is large. However, sometimes a large fraction of degree-2 variable nodes is used to facilitate a fast encoding structure, as seen in the IEEE 802.11 standard and the DVB-S2 standard. In contrast to MIM-QBP, the proposed RCQ decoder may be applied to any off-the-shelf LDPC code, including those with a large fraction of degree-2 variable nodes. Simulations show that a 4-bit Min-Sum RCQ decoder delivers frame error rate (FER) performance within 0.1 dB of floating point belief propagation (BP) for the IEEE 802.11 standard LDPC code in the low SNR region. The RCQ decoder actually outperforms floating point BP and Min-Sum in the high SNR region were FER less than 10 −5 . This paper also introduces Hierarchical Dynamic Quantization (HDQ) to design the time-varying non-uniform quantizers required by RCQ decoders. HDQ is a low-complexity design technique that is slightly sub-optimal. Simulation results comparing HDQ and optimal quantization on the symmetric binary-input memoryless additive white Gaussian noise channel show a mutual information loss of less than 10 −6 bits, which is negligible in practice. 
    more » « less
  5. Unlike the half-duplex relay, the performance of the full-duplex relay is highly sensitive to the correlation between the source and relay codebooks. Linear coding complicates the design of correlated codebooks, for example in multilevel coding (MLC) linear codes at each layer can only have correlation zero or one, leading to a performance penalty that has been characterized in earlier work. In this paper, we propose a new design technique that significantly reduces the correlation penalty of linear codes via intelligent labeling for the modulation. The basic idea is as follows: the chain rule for mutual information, which is the backbone of MLC, is not-unique in two ways: the labeling of modulation constellation as well as the ordering of the chain rule. Our optimization at each level pushes the mutual information terms involving new information (for the relay) or beamforming information to zero or one. In effect this finds a suitable decomposition of overall correlation to a set of binary correlations at individual levels of MLC. Simulations show that point-to-point LDPC codes in combination with the proposed correlation design lead to excellent performance. 
    more » « less