We investigate the performance of multi-level polar coded modulation in the decode-forward relay channel. We begin by numerically analyzing the rates assigned to polar codes of all levels via chain rule and error exponent. The construction of polar codes follows the 5G standard. A joint decoding based on maximum ratio combining with multistage decoding is proposed for the destination. We simulate the error performance under 16QAM with gray labeling and Ungerboeck's set partitioning. In the half-duplex mode, a gain of 2.5dB is observed compared with the state of the art, consisting of 0.7 dB gain due to multistage decoding and 1.8dB gain due to the choice of labeling. In addition, the error performance according to error exponent is compared with the chain rule. A dispersion bound for the decode-forward relaying is calculated.
more »
« less
Full-duplex relays under multilevel coding: Correlation design via modulation labeling
Unlike the half-duplex relay, the performance of the full-duplex relay is highly sensitive to the correlation between the source and relay codebooks. Linear coding complicates the design of correlated codebooks, for example in multilevel coding (MLC) linear codes at each layer can only have correlation zero or one, leading to a performance penalty that has been characterized in earlier work. In this paper, we propose a new design technique that significantly reduces the correlation penalty of linear codes via intelligent labeling for the modulation. The basic idea is as follows: the chain rule for mutual information, which is the backbone of MLC, is not-unique in two ways: the labeling of modulation constellation as well as the ordering of the chain rule. Our optimization at each level pushes the mutual information terms involving new information (for the relay) or beamforming information to zero or one. In effect this finds a suitable decomposition of overall correlation to a set of binary correlations at individual levels of MLC. Simulations show that point-to-point LDPC codes in combination with the proposed correlation design lead to excellent performance.
more »
« less
- Award ID(s):
- 1711689
- PAR ID:
- 10073053
- Date Published:
- Journal Name:
- International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the performance of discrete (coded) modulations in the full-duplex compress-forward relay channel using multilevel coding. We numerically analyze the rates assigned to component binary codes of all levels. LDPC codes are used as the component binary codes to provide error protection. The compression at the relay is done via a nested scalar quantizer whose output is mapped to a codeword through LDPC codes. A compound Tanner graphical model and information-exchange algorithm are described for joint decoding of both messages sent from the source and relay. Simulation results show that the performance of the proposed system based on multilevel coding is better than that based on BICM, and is separated from the SNR threshold of the known CF achievable rate by two factors consisting approximately of the sum of the shaping gain (due to scalar quantization) and the separation of the LDPC code implementation from AWGN capacity.more » « less
-
We consider the storage–retrieval rate trade-off in private information retrieval (PIR) systems using a Shannon-theoretic approach. Our focus is mostly on the canonical two-message two-database case, for which a coding scheme based on random codebook generation and the binning technique is proposed. This coding scheme reveals a hidden connection between PIR and the classic multiple description source coding problem. We first show that when the retrieval rate is kept optimal, the proposed non-linear scheme can achieve better performance over any linear scheme. Moreover, a non-trivial storage-retrieval rate trade-off can be achieved beyond space-sharing between this extreme point and the other optimal extreme point, achieved by the retrieve-everything strategy. We further show that with a method akin to the expurgation technique, one can extract a zero-error PIR code from the random code. Outer bounds are also studied and compared to establish the superiority of the non-linear codes over linear codes.more » « less
-
In this paper, we consider the amplify-and-forward relay networks in mmWave systems and propose a hybrid precoder/combiner design approach. The phase-only RF precoding/ combining matrices are first designed to support multi-stream transmission, where we compensate the phase for the eigenmodes of the channel. Then, the baseband precoders/combiners are performed to achieve the maximum mutual information. Based on the data processing inequality for the mutual information, we first jointly design the baseband source and relay nodes to maximize the mutual information before the destination baseband receiver. The proposed low-complexity iterative algorithm for the source and relay nodes is based on the equivalence between mutual information maximization and the weighted MMSE. After we obtain the optimal precoder and combiner for the source and relay nodes, we implement the MMSE-SIC filter at the baseband receiver to keep the mutual information unchanged, thus obtaining the optimal mutual information for the whole relay system. Simulation results show that our algorithm achieves better performance with lower complexity compared with other algorithms in the literature.more » « less
-
Analog network coding (ANC) is a throughput increasing technique for the two-way relay channel (TWRC) whereby two end nodes transmit simultaneously to a relay at the same time and band, followed by the relay broadcasting the received sum of signals to the end nodes. Coherent reception under ANC is challenging due to requiring oscillator synchronization for all nodes, a problem further exacerbated by Doppler shift. This work develops a noncoherent M-ary frequency-shift keyed (FSK) demodulator implementing ANC. The demodulator produces soft outputs suitable for use with capacity-approaching channel codes and supports information feedback from the channel decoder. A unique aspect of the formulation is the presence of an infinite summation in the received symbol probability density function. Detection and channel decoding succeed when the truncated summation contains a sufficient number of terms. Bit error rate performance is investigated by Monte Carlo simulation, considering modulation orders two, four and eight, channel coded and uncoded operation, and with and without information feedback from decoder to demodulator. The channel code considered for simulation is the LDPC code defined by the DVB-S2 standard. To our knowledge this work is the first to develop a noncoherent soft-output demodulator for ANC.more » « less
An official website of the United States government

