Abstract The identification of bright quasars atz≳ 6 enables detailed studies of supermassive black holes, massive galaxies, structure formation, and the state of the intergalactic medium within the first billion years after the Big Bang. We present the spectroscopic confirmation of 55 quasars at redshifts 5.6 <z< 6.5 and UV magnitudes −24.5 <M1450< −28.5 identified in the optical Pan-STARRS1 and near-IR VIKING surveys (48 and 7, respectively). Five of these quasars have independently been discovered in other studies. The quasar sample shows an extensive range of physical properties, including 17 objects with weak emission lines, 10 broad absorption line quasars, and 5 objects with strong radio emission (radio-loud quasars). There are also a few notable sources in the sample, including a blazar candidate atz= 6.23, a likely gravitationally lensed quasar atz= 6.41, and az= 5.84 quasar in the outskirts of the nearby (D∼ 3 Mpc) spiral galaxy M81. The blazar candidate remains undetected in NOEMA observations of the [Cii]and underlying emission, implying a star formation rate <30–70M⊙yr−1. A significant fraction of the quasars presented here lies at the foundation of the first measurement of thez∼ 6 quasar luminosity function from Pan-STARRS1 (introduced in a companion paper). These quasars will enable further studies of the high-redshift quasar population with current and future facilities.
more »
« less
Three new VHS–DES quasars at 6.7 6.5
- Award ID(s):
- 1751404
- PAR ID:
- 10109051
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 487
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 1874 to 1885
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the KODIAQ-Z survey aimed to characterize the cool, photoionized gas at 2.2 ≲z≲ 3.6 in 202 Hi-selected absorbers with 14.6 ≤ < 20 that probe the interface between galaxies and the intergalactic medium (IGM). We find that gas with at 2.2 ≲z≲ 3.6 can be metal-rich (−1.6 ≲ [X/H] ≲ − 0.2) as seen in damped Lyαabsorbers (DLAs); it can also be very metal-poor ([X/H] < − 2.4) or even pristine ([X/H] < − 3.8), which is not observed in DLAs but is common in the IGM. For absorbers, the frequency of pristine absorbers is about 1%–10%, while for absorbers it is 10%–20%, similar to the diffuse IGM. Supersolar gas is extremely rare (<1%) at these redshifts. The factor of several thousand spread from the lowest to highest metallicities and large metallicity variations (a factor of a few to >100) between absorbers separated by less than Δv< 500 km s−1imply that the metals are poorly mixed in gas. We show that these photoionized absorbers contribute to about 14% of the cosmic baryons and 45% of the cosmic metals at 2.2 ≲z≲ 3.6. We find that the mean metallicity increases withNHi, consistent with what is found inz< 1 gas. The metallicity of gas in this column density regime has increased by a factor ∼8 from 2.2 ≲z≲ 3.6 toz< 1, but the contribution of the absorbers to the total metal budget of the universe atz< 1 is a quarter of that at 2.2 ≲z≲ 3.6. We show that FOGGIE cosmological zoom-in simulations have a similar evolution of [X/H] withNHi, which is not observed in lower-resolution simulations. In these simulations, very metal-poor absorbers with [X/H] < − 2.4 atz∼ 2–3 are tracers of inflows, while higher-metallicity absorbers are a mixture of inflows and outflows.more » « less
-
Abstract We present a search for extreme emission line galaxies (EELGs) atz< 1 in the COSMOS and North Ecliptic Pole (NEP) fields with imaging from Subaru/Hyper Suprime-Cam (HSC) and a combination of new and existing spectroscopy. We select EELGs on the basis of substantial excess flux in thezbroad band, which is sensitive to Hαat 0.3 ≲z≲ 0.42 and [Oiii]λ5007 at 0.7 ≲z≲ 0.86. We identify 10,470 galaxies withzexcesses in the COSMOS data set and 91,385 in the NEP field. We cross-reference the COSMOS EELG sample with the zCOSMOS and DEIMOS 10k spectral catalogs, finding 1395 spectroscopic matches. We made an additional 71 (46 unique) spectroscopic measurements withY< 23 using the HYDRA multiobject spectrograph on the WIYN 3.5 m telescope, and 204 spectroscopic measurements from the DEIMOS spectrograph on the Keck II telescope, providing a total of 1441/10,470 spectroscopic redshifts for the EELG sample in COSMOS (∼14%). We confirm that 1418 (∼98%) are Hαor [Oiii]λ5007 emitters in the above stated redshift ranges. We also identify 240 redshifted Hαand [Oiii]λ5007 emitters in the NEP using spectra taken with WIYN/HYDRA and Keck/DEIMOS. Using broadband-selection techniques in theg−r−icolor space, we distinguish between Hαand [Oiii]λ5007 emitters with 98.6% accuracy. We test our EELG selection by constructing Hαand [Oiii]λ5007 luminosity functions and comparing to recent literature results. We conclude that broadband magnitudes from HSC, the Vera C. Rubin Observatory, and other deep optical multiband surveys can be used to select EELGs in a straightforward manner.more » « less
-
ABSTRACT In this paper, we provide updated constraints on the bolometric quasar luminosity function (QLF) from z = 0 to z = 7. The constraints are based on an observational compilation that includes observations in the rest-frame IR, B band, UV, soft, and hard X-ray in past decades. Our method follows Hopkins et al. with an updated quasar SED model and bolometric and extinction corrections. The new best-fitting bolometric quasar luminosity function behaves qualitatively different from the old Hopkins model at high redshift. Compared with the old model, the number density normalization decreases towards higher redshift and the bright-end slope is steeper at z ≳ 2. Due to the paucity of measurements at the faint end, the faint end slope at z ≳ 5 is quite uncertain. We present two models, one featuring a progressively steeper faint-end slope at higher redshift and the other featuring a shallow faint-end slope at z ≳ 5. Further multiband observations of the faint-end QLF are needed to distinguish between these models. The evolutionary pattern of the bolometric QLF can be interpreted as an early phase likely dominated by the hierarchical assembly of structures and a late phase likely dominated by the quenching of galaxies. We explore the implications of this model on the ionizing photon production by quasars, the CXB spectrum, the SMBH mass density, and mass functions. The predicted hydrogen photoionization rate contributed by quasars is subdominant during the epoch of reionization and only becomes important at z ≲ 3. The predicted CXB spectrum, cosmic SMBH mass density, and SMBH mass function are generally consistent with existing observations.more » « less
An official website of the United States government

