skip to main content

Title: The role of chlorine in global tropospheric chemistry
We present a comprehensive simulation of tropospheric chlorine within the GEOS-Chem global 3-D model of oxidant–aerosol–halogen atmospheric chemistry. The simulation includes explicit accounting of chloride mobilization from sea salt aerosol by acid displacement of HCl and by other heterogeneous processes. Additional small sources of tropospheric chlorine (combustion, organochlorines, transport from stratosphere) are also included. Reactive gas-phase chlorine Cl*, including Cl, ClO, Cl2, BrCl, ICl, HOCl, ClNO3, ClNO2, and minor species, is produced by the HCl+OH reaction and by heterogeneous conversion of sea salt aerosol chloride to BrCl, ClNO2, Cl2, and ICl. The model successfully simulates the observed mixing ratios of HCl in marine air (highest at northern midlatitudes) and the associated HNO3 decrease from acid displacement. It captures the high ClNO2 mixing ratios observed in continental surface air at night and attributes the chlorine to HCl volatilized from sea salt aerosol and transported inland following uptake by fine aerosol. The model successfully simulates the vertical profiles of HCl measured from aircraft, where enhancements in the continental boundary layer can again be largely explained by transport inland of the marine source. It does not reproduce the boundary layer Cl2 mixing ratios measured in the WINTER aircraft campaign (1–5 ppt in the daytime, more » low at night); the model is too high at night, which could be due to uncertainty in the rate of the ClNO2+Cl− reaction, but we have no explanation for the high observed Cl2 in daytime. The global mean tropospheric concentration of Cl atoms in the model is 620 cm−3 and contributes 1.0 % of the global oxidation of methane, 20 % of ethane, 14 % of propane, and 4 % of methanol. Chlorine chemistry increases global mean tropospheric BrO by 85 %, mainly through the HOBr+Cl− reaction, and decreases global burdens of tropospheric ozone by 7 % and OH by 3 % through the associated bromine radical chemistry. ClNO2 chemistry drives increases in ozone of up to 8 ppb over polluted continents in winter. « less
Authors:
Award ID(s):
1643217
Publication Date:
NSF-PAR ID:
10109063
Journal Name:
Atmospheric chemistry and physics
Volume:
19
Page Range or eLocation-ID:
3981-4003
ISSN:
1680-7324
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We present a comprehensive simulation of tropospheric chlorinewithin the GEOS-Chem global 3-D model of oxidant–aerosol–halogen atmosphericchemistry. The simulation includes explicit accounting of chloridemobilization from sea salt aerosol by acid displacement of HCl and by otherheterogeneous processes. Additional small sources of tropospheric chlorine(combustion, organochlorines, transport from stratosphere) are also included.Reactive gas-phase chlorine Cl*, including Cl, ClO, Cl2, BrCl, ICl,HOCl, ClNO3, ClNO2, and minor species, is produced by theHCl+OH reaction and by heterogeneous conversion of sea salt aerosolchloride to BrCl, ClNO2, Cl2, and ICl. The modelsuccessfully simulates the observed mixing ratios of HCl in marine air(highest at northern midlatitudes) and the associated HNO3decrease from acid displacement. It captures the high ClNO2 mixingratios observed in continental surface air at night and attributes thechlorine to HCl volatilized from sea salt aerosol and transported inlandfollowing uptake by fine aerosol. The model successfully simulates thevertical profiles of HCl measured from aircraft, where enhancements in thecontinental boundary layer can again be largely explained by transport inlandof the marine source. It does not reproduce the boundary layer Cl2mixing ratios measured in the WINTER aircraft campaign (1–5 ppt in thedaytime, low at night); the model is too high at night, which could be due touncertainty in the rate ofmore »the ClNO2+Cl- reaction, but we haveno explanation for the high observed Cl2 in daytime. The globalmean tropospheric concentration of Cl atoms in the model is 620 cm−3and contributes 1.0 % of the global oxidation of methane, 20 % ofethane, 14 % of propane, and 4 % of methanol. Chlorine chemistryincreases global mean tropospheric BrO by 85 %, mainly through theHOBr+Cl- reaction, and decreases global burdens of troposphericozone by 7 % and OH by 3 % through the associated bromine radicalchemistry. ClNO2 chemistry drives increases in ozone of up to8 ppb over polluted continents in winter.« less
  2. Abstract. We present an updated mechanism for tropospheric halogen (Cl + Br + I) chemistry in the GEOS-Chem global atmospheric chemical transportmodel and apply it to investigate halogen radical cycling and implications for tropospheric oxidants. Improved representation of HOBr heterogeneouschemistry and its pH dependence in our simulation leads to less efficient recycling and mobilization of bromine radicals and enables the model toinclude mechanistic sea salt aerosol debromination without generating excessive BrO. The resulting global mean tropospheric BrO mixingratio is 0.19 ppt (parts per trillion), lower than previous versions of GEOS-Chem. Model BrO shows variable consistency and biases in comparison tosurface and aircraft observations in marine air, which are often near or below the detection limit. The model underestimates the daytimemeasurements of Cl2 and BrCl from the ATom aircraft campaign over the Pacific and Atlantic, which if correct would imply a very largemissing primary source of chlorine radicals. Model IO is highest in the marine boundary layer and uniform in the free troposphere, with a globalmean tropospheric mixing ratio of 0.08 ppt, and shows consistency with surface and aircraft observations. The modeled global meantropospheric concentration of Cl atoms is 630 cm−3, contributing 0.8 % of the global oxidation of methane, 14 % of ethane,8 % of propane, and 7 % of highermore »alkanes. Halogen chemistry decreases the global tropospheric burden of ozone by 11 %,NOx by 6 %, and OH by 4 %. Most of the ozone decrease is driven by iodine-catalyzed loss. The resulting GEOS-Chem ozonesimulation is unbiased in the Southern Hemisphere but too low in the Northern Hemisphere.« less
  3. The daytime oxidation of biogenic hydrocarbons is attributed to both OH radicals and O3, while nighttime chemistry is dominated by the reaction with O3 and NO3 radicals. Here, the diurnal pattern of Secondary Organic Aerosol (SOA) originating from biogenic hydrocarbons was intensively evaluated under varying environmental conditions (temperature, humidity, sunlight intensity, NOx levels, and seed conditions) by using the UNIfied Partitioning Aerosol phase Reaction (UNIPAR) model, which comprises multiphase gas-particle partitioning and in-particle chemistry. The oxidized products of three different hydrocarbons (isoprene, α-pinene, and β-caryophyllene) were predicted by using near explicit gas mechanisms for four different oxidation paths (OH, O3, NO3, and O(3P)) during day and night. The gas mechanisms implemented the Master Chemical Mechanism (MCM v3.3.1), the reactions that formed low volatility products via peroxy radical (RO2) autoxidation, and self- and cross-reactions of nitrate-origin RO2. In the model, oxygenated products were then classified into volatility-reactivity base lumping species, which were dynamically constructed under varying NOx levels and aging scales. To increase feasibility, the UNIPAR model that equipped mathematical equations for stoichiometric coefficients and physicochemical parameters of lumping species was integrated with the SAPRC gas mechanism. The predictability of the UNIPAR model was demonstrated by simulating chamber-generated SOA data undermore »varying environments day and night. Overall, the SOA simulation decoupled to each oxidation path indicated that the nighttime isoprene SOA formation was dominated by the NO3-driven oxidation, regardless of NOx levels. However, the oxidation path to produce the nighttime α-pinene SOA gradually transited from the NO3-initiated reaction to ozonolysis as NOx levels decreased. For daytime SOA formation, both isoprene and α-pinene were dominated by the OH-radical initiated oxidation. The contribution of the O(3P) path to all biogenic SOA formation was negligible in daytime. Sunlight during daytime promotes the decomposition of oxidized products via photolysis and thus, reduces SOA yields. Nighttime α-pinene SOA yields were significantly higher than daytime SOA yields, although the nighttime α-pinene SOA yields gradually decreased with decreasing NOx levels. For isoprene, nighttime chemistry yielded higher SOA mass than daytime at the higher NOx level (isoprene/NOx > 5 ppbC/ppb). The daytime isoprene oxidation at the low NOx level formed epoxy-diols that significantly contributed SOA formation via heterogeneous chemistry. For isoprene and α-pinene, daytime SOA yields gradually increased with decreasing NOx levels. The daytime SOA produced more highly oxidized multifunctional products and thus, it was generally more sensitive to the aqueous reactions than the nighttime SOA. β-Caryophyllene, which rapidly oxidized and produced SOA with high yields, showed a relatively small variation in SOA yields from changes in environmental conditions (i.e., NOx levels, seed conditions, and diurnal pattern), and its SOA formation was mainly attributed to ozonolysis day and night. To mimic the nighttime α-pinene SOA formation under the polluted urban atmosphere, α-pinene SOA formation was simulated in the presence of gasoline fuel. The simulation suggested the growth of α-pinene SOA in the presence of gasoline fuel gas by the enhancement of the ozonolysis path under the excess amount of ozone, which is typical in urban air. We concluded that the oxidation of the biogenic hydrocarbon with O3 or NO3 radicals is a source to produce a sizable amount of nocturnal SOA, despite of the low emission at night.« less
  4. We present a simulation of the global present-day composition of the troposphere which includes the chemistry of halogens (Cl, Br, I). Building on previous work within the GEOS-Chem model we include emissions of inorganic iodine from the oceans, anthropogenic and biogenic sources of halogenated gases, gas phase chemistry, and a parameterised approach to heterogeneous halogen chemistry. Consistent with Schmidt et al. (2016) we do not include sea-salt debromination. Observations of halogen radicals (BrO, IO) are sparse but the model has some skill in reproducing these. Modelled IO shows both high and low biases when compared to different datasets, but BrO concentrations appear to be modelled low. Comparisons to the very sparse observations dataset of reactive Cl species suggest the model represents a lower limit of the impacts of these species, likely due to underestimates in emissions and therefore burdens. Inclusion of Cl, Br, and I results in a general improvement in simulation of ozone (O3) concentrations, except in polar regions where the model now underestimates O3 concentrations. Halogen chemistry reduces the global tropospheric O3 burden by 18.6 %, with the O3 lifetime reducing from 26 to 22 days. Global mean OH concentrations of 1.28  ×  106 molecules cm−3 are 8.2 % lower than in a simulationmore »without halogens, leading to an increase in the CH4 lifetime (10.8 %) due to OH oxidation from 7.47 to 8.28 years. Oxidation of CH4 by Cl is small (∼  2 %) but Cl oxidation of other VOCs (ethane, acetone, and propane) can be significant (∼  15–27 %). Oxidation of VOCs by Br is smaller, representing 3.9 % of the loss of acetaldehyde and 0.9 % of the loss of formaldehyde.« less
  5. Abstract. Bromine radicals influence global tropospheric chemistryby depleting ozone and by oxidizing elemental mercury and reduced sulfurspecies. Observations typically indicate a 50 % depletion of sea saltaerosol (SSA) bromide relative to seawater composition, implying that SSAdebromination could be the dominant global source of tropospheric bromine.However, it has been difficult to reconcile this large source with therelatively low bromine monoxide (BrO) mixing ratios observed in the marineboundary layer (MBL). Here we present a new mechanistic description of SSAdebromination in the GEOS-Chem global atmospheric chemistry model with adetailed representation of halogen (Cl, Br, and I) chemistry. We show thatobserved levels of SSA debromination can be reproduced in a mannerconsistent with observed BrO mixing ratios. Bromine radical sinks from theHOBr + S(IV) heterogeneous reactions and from ocean emission ofacetaldehyde are critical in moderating tropospheric BrO levels. Theresulting HBr is rapidly taken up by SSA and also deposited. Observations of SSA debromination at southern midlatitudes in summer suggest that modeluptake of HBr by SSA may be too fast. The model provides a successfulsimulation of free-tropospheric BrO in the tropics and midlatitudes in summer,where the bromine radical sink from the HOBr + S(IV) reactions iscompensated for by more efficient HOBr-driven recycling in clouds comparedmore »toprevious GEOS-Chem versions. Simulated BrO in the MBL is generally muchhigher in winter than in summer due to a combination of greater SSA emissionand slower conversion of bromine radicals to HBr. An outstanding issue inthe model is the overestimate of free-tropospheric BrO in extratropicalwinter–spring, possibly reflecting an overestimate of the HOBr∕HBr ratiounder these conditions where the dominant HOBr source is hydrolysis ofBrNO3.

    « less