Coupling Power System Dynamics and Building Dynamics to Enabling Building-to-Grid Integration
- Award ID(s):
- 1802017
- Publication Date:
- NSF-PAR ID:
- 10109101
- Journal Name:
- Linköping Electronic Conference Proceedings
- Volume:
- 157
- Page Range or eLocation-ID:
- 561 to 566
- ISSN:
- 1650-3686
- Sponsoring Org:
- National Science Foundation
More Like this
-
We propose a method that simultaneously identifies a sparse transfer matrix and disturbance for a multi-zone building’s dynamics from input-output measurements. An l1 -regularized least-squares optimization problem is solved to obtain a sparse solution, so that only dominant interactions among zones are retained in the model. The disturbance is assumed to be piecewise-constant: the assumption aids identification and is motivated by the nature of occupancy that determines the disturbance. Application of our method on data from a simulation model shows promising results.
-
Sulfur- and silicon-containing molecules are omnipresent in interstellar and circumstellar environments, but their elementary formation mechanisms have been obscure. These routes are of vital significance in starting a chain of chemical reactions ultimately forming (organo) sulfur molecules—among them precursors to sulfur-bearing amino acids and grains. Here, we expose via laboratory experiments, computations, and astrochemical modeling that the silicon-sulfur chemistry can be initiated through the gas-phase reaction of atomic silicon with hydrogen sulfide leading to silicon monosulfide (SiS) via nonadiabatic reaction dynamics. The facile pathway to the simplest silicon and sulfur diatomic provides compelling evidence for the origin of silicon monosulfide in star-forming regions and aids our understanding of the nonadiabatic reaction dynamics, which control the outcome of the gas-phase formation in deep space, thus expanding our view about the life cycle of sulfur in the galaxy.
-
Silicon monoxide (SiO) is classified as a key precursor and fundamental molecular building block to interstellar silicate nanoparticles, which play an essential role in the synthesis of molecular building blocks connected to the Origins of Life. In the cold interstellar medium, silicon monoxide is of critical importance in initiating a series of elementary chemical reactions leading to larger silicon oxides and eventually to silicates. To date, the fundamental formation mechanisms and chemical dynamics leading to gas phase silicon monoxide have remained largely elusive. Here, through a concerted effort between crossed molecular beam experiments and electronic structure calculations, it is revealed that instead of forming highly-stable silicon dioxide (SiO 2 ), silicon monoxide can be formed via a barrierless, exoergic, single-collision event between ground state molecular oxygen and atomic silicon involving non-adiabatic reaction dynamics through various intersystem crossings. Our research affords persuasive evidence for a likely source of highly rovibrationally excited silicon monoxide in cold molecular clouds thus initiating the complex chain of exoergic reactions leading ultimately to a population of silicates at low temperatures in our Galaxy.