skip to main content

Title: Gas-phase formation of silicon monoxide via non-adiabatic reaction dynamics and its role as a building block of interstellar silicates
Silicon monoxide (SiO) is classified as a key precursor and fundamental molecular building block to interstellar silicate nanoparticles, which play an essential role in the synthesis of molecular building blocks connected to the Origins of Life. In the cold interstellar medium, silicon monoxide is of critical importance in initiating a series of elementary chemical reactions leading to larger silicon oxides and eventually to silicates. To date, the fundamental formation mechanisms and chemical dynamics leading to gas phase silicon monoxide have remained largely elusive. Here, through a concerted effort between crossed molecular beam experiments and electronic structure calculations, it is revealed that instead of forming highly-stable silicon dioxide (SiO 2 ), silicon monoxide can be formed via a barrierless, exoergic, single-collision event between ground state molecular oxygen and atomic silicon involving non-adiabatic reaction dynamics through various intersystem crossings. Our research affords persuasive evidence for a likely source of highly rovibrationally excited silicon monoxide in cold molecular clouds thus initiating the complex chain of exoergic reactions leading ultimately to a population of silicates at low temperatures in our Galaxy.  more » « less
Award ID(s):
1920304 1853541
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Page Range / eLocation ID:
19761 to 19772
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For more than half a century, pericyclic reactions have played an important role in advancing our fundamental understanding of cycloadditions, sigmatropic shifts, group transfer reactions, and electrocyclization reactions. However, the fundamental mechanisms of photochemically activated cheletropic reactions have remained contentious. Here we report on the simplest cheletropic reaction: the [2+1] addition of ground state 18 O-carbon monoxide (C 18 O, X 1 Σ + ) to D2-acetylene (C 2 D 2 ) photochemically excited to the first excited triplet (T1), second excited triplet (T2), and first excited singlet state (S1) at 5 K, leading to the formation of D2- 18 O-cyclopropenone (c-C 3 D 2 18 O). Supported by quantum-chemical calculations, our investigation provides persuasive testimony on stepwise cheletropic reaction pathways to cyclopropenone via excited state dynamics involving the T2 (non-adiabatic) and S1 state (adiabatic) of acetylene at 5 K, while the T1 state energetically favors an intermediate structure that directly dissociates after relaxing to the ground state. The agreement between experiments in low temperature ices and the excited state calculations signifies how photolysis experiments coupled with theoretical calculations can untangle polyatomic reactions with relevance to fundamental physical organic chemistry at the molecular level, thus affording a versatile strategy to unravel exotic non-equilibrium chemistries in cyclic, aromatic organics. Distinct from traditional radical–radical pathways leading to organic molecules on ice-coated interstellar nanoparticles (interstellar grains) in cold molecular clouds and star-forming regions, the photolytic formation of cyclopropenone as presented changes the perception of how we explain the formation of complex organics in the interstellar medium eventually leading to the molecular precursors of biorelevant molecules. 
    more » « less
  2. null (Ed.)
    Complex organosulfur molecules are ubiquitous in interstellar molecular clouds, but their fundamental formation mechanisms have remained largely elusive. These processes are of critical importance in initiating a series of elementary chemical reactions, leading eventually to organosulfur molecules—among them potential precursors to iron-sulfide grains and to astrobiologically important molecules, such as the amino acid cysteine. Here, we reveal through laboratory experiments, electronic-structure theory, quasi-classical trajectory studies, and astrochemical modeling that the organosulfur chemistry can be initiated in star-forming regions via the elementary gas-phase reaction of methylidyne radicals with hydrogen sulfide, leading to thioformaldehyde (H 2 CS) and its thiohydroxycarbene isomer (HCSH). The facile route to two of the simplest organosulfur molecules via a single-collision event affords persuasive evidence for a likely source of organosulfur molecules in star-forming regions. These fundamental reaction mechanisms are valuable to facilitate an understanding of the origin and evolution of the molecular universe and, in particular, of sulfur in our Galaxy. 
    more » « less
  3. null (Ed.)
    Since the postulation of carbenes by Buchner (1903) and Staudinger (1912) as electron-deficient transient species carrying a divalent carbon atom, carbenes have emerged as key reactive intermediates in organic synthesis and in molecular mass growth processes leading eventually to carbonaceous nanostructures in the interstellar medium and in combustion systems. Contemplating the short lifetimes of these transient molecules and their tendency for dimerization, free carbenes represent one of the foremost obscured classes of organic reactive intermediates. Here, we afford an exceptional glance into the fundamentally unknown gas-phase chemistry of preparing two prototype carbenes with distinct multiplicities—triplet pentadiynylidene (HCCCCCH) and singlet ethynylcyclopropenylidene (c-C 5 H 2 ) carbene—via the elementary reaction of the simplest organic radical—methylidyne (CH)—with diacetylene (HCCCCH) under single-collision conditions. Our combination of crossed molecular beam data with electronic structure calculations and quasi-classical trajectory simulations reveals fundamental reaction mechanisms and facilitates an intimate understanding of bond-breaking processes and isomerization processes of highly reactive hydrocarbon intermediates. The agreement between experimental chemical dynamics studies under single-collision conditions and the outcome of trajectory simulations discloses that molecular beam studies merged with dynamics simulations have advanced to such a level that polyatomic reactions with relevance to extreme astrochemical and combustion chemistry conditions can be elucidated at the molecular level and expanded to higher-order homolog carbenes such as butadiynylcyclopropenylidene and triplet heptatriynylidene, thus offering a versatile strategy to explore the exotic chemistry of novel higher-order carbenes in the gas phase. 
    more » « less
  4. Sulfur- and silicon-containing molecules are omnipresent in interstellar and circumstellar environments, but their elementary formation mechanisms have been obscure. These routes are of vital significance in starting a chain of chemical reactions ultimately forming (organo) sulfur molecules—among them precursors to sulfur-bearing amino acids and grains. Here, we expose via laboratory experiments, computations, and astrochemical modeling that the silicon-sulfur chemistry can be initiated through the gas-phase reaction of atomic silicon with hydrogen sulfide leading to silicon monosulfide (SiS) via nonadiabatic reaction dynamics. The facile pathway to the simplest silicon and sulfur diatomic provides compelling evidence for the origin of silicon monosulfide in star-forming regions and aids our understanding of the nonadiabatic reaction dynamics, which control the outcome of the gas-phase formation in deep space, thus expanding our view about the life cycle of sulfur in the galaxy. 
    more » « less
  5. Abstract

    Glycinal (HCOCH2NH2) and acetamide (CH3CONH2) are simple molecular building blocks of biomolecules in prebiotic chemistry, though their origin on early Earth and formation in interstellar media remain a mystery. These molecules are formed with their tautomers in low temperature interstellar model ices upon interaction with simulated galactic cosmic rays. Glycinal and acetamide are accessed via barrierless radical‐radical reactions of vinoxy (⋅CH2CHO) and acetyl (⋅C(O)CH3), and then undergo keto‐enol tautomerization. Exploiting tunable photoionization reflectron time‐of‐flight mass spectroscopy and photoionization efficiency (PIE) curves, these results demonstrate fundamental reaction pathways for the formation of complex organics through non‐equilibrium ice reactions in cold molecular cloud environments. These molecules demonstrate an unconventional starting point for abiotic synthesis of organics relevant to contemporary biomolecules like polypeptides and cell membranes in deep space.

    more » « less