skip to main content

Title: Validation of an Extensible Rod Model for Soft continuum Manipulators
Numerous soft and continuum robotic manipulators have demonstrated their potential for compliant operation in highly unstructured environments or near people. Despite their recent popularity, modeling of their smooth bending deformation remains a challenge. For soft continuum manipulators, the widespread, constant curvature approach to modeling is inadequate for modeling some deformations that occur in practice, such as combined bending and twisting deformations. In this paper, we extend the classical Cosserat rod approach to model a variable-length, pneumatic soft continuum arm. We model the deformation of a pneumatically driven soft continuum manipulator, and the model is then compared against experimental data collected from a three degree of freedom, pneumatically actuated, soft continuum manipulator. The model shows good agreement in capturing the overall behavior of the bending deformation, with mean Euclidean error at the tip of the robot of 2.48 cm for a 22 cm long robot. In addition, the model shows good numerical stability for simulating long duration computations.
Award ID(s):
Publication Date:
Journal Name:
2019 2nd IEEE International Conference on Soft Robotics (RoboSoft)
Page Range or eLocation-ID:
711 to 716
Sponsoring Org:
National Science Foundation
More Like this
  1. Tendon actuated multisection continuum arms have high potential for inspection applications in highly constrained spaces. They generate motion by axial and bending deformations. However, because of the high mechanical coupling between continuum sections, variable length-based kinematic models produce poor results. A new mechanics model for tendon actuated multisection continuum arms is proposed in this paper. The model combines the continuum arm curve parameter kinematics and concentric tube kinematics to correctly account for the large axial and bending deformations observed in the robot. Also, the model is computationally efficient and utilizes tendon tensions as the joint space variables thus eliminating the actuator length related problems such as slack and backlash. A recursive generalization of the model is also presented. Despite the high coupling between continuum sections, numerical results show that the model can be used for generating correct forward and inverse kinematic results. The model is then tested on a thin and long multisection continuum arm. The results show that the model can be used to successfully model the deformation.
  2. We describe a new series pneumatic artificial muscle (sPAM) and its application as an actuator for a soft continuum robot. The robot consists of three sPAMs arranged radially around a tubular pneumatic backbone. Analogous to tendons, the sPAMs exert a tension force on the robot’s pneu- matic backbone, causing bending that is approximately constant curvature. Unlike a traditional tendon driven continuum robot, the robot is entirely soft and contains no hard components, making it safer for human interaction. Models of both the sPAM and soft continuum robot kinematics are presented and experimentally verified. We found a mean position accuracy of 5.5 cm for predicting the end-effector position of a 42 cm long robot with the kinematic model. Finally, closed-loop control is demonstrated using an eye-in-hand visual servo control law which provides a simple interface for operation by a human. The soft continuum robot with closed-loop control was found to have a step-response rise time and settling time of less than two seconds.
  3. Via analytical modeling and experimental validation, this study examines the bending stiffness adaptation of bistable origami modules based on generalized Kresling pattern. These modules, which are the building blocks of an octopus-inspired robotic manipulator, can create a reconfigurable articulation via switching between their stable states. In this way, the manipulator can exhibit pseudo-linkage kinematics with lower control requirements and improved motion accuracy compared to completely soft manipulators. A key to achieving this reconfigurable articulation is that the underlying Kresling modules must show a sufficient difference in bending stiffness between their stable states. Therefore, this study aims to use both a nonlinear bar-hinge model and experimental testing to uncover the correlation between the module bending stiffness and the corresponding origami designs. The results show that the Kresling origami module can indeed exhibit a significant change in bending stiffness because of the reorientation of its triangular facets. That is, at one stable state, these facets align close to parallel to the longitudinal axis of the cylindrical-shaped module, so the module bending stiffness is relatively high and dominated by the facet stretching. However, at the other stable states, the triangular facets are orientated close to perpendicular to the longitudinal axis, so the bendingmore »stiffness is low and dominated by crease folding. The results of this study will provide the necessary design insights for constructing a fully functional manipulator with the desired articulation behavior.« less
  4. There has been an explosion of ideas in soft robotics over the past decade, resulting in unprecedented opportunities for end effector design. Soft robot hands offer benefits of low-cost, compliance, and customized design, with the promise of dexterity and robustness. The space of opportunities is vast and exciting. However, new tools are needed to understand the capabilities of such manipulators and to facilitate manipulation planning with soft manipulators that exhibit free-form deformations. To address this challenge, we introduce a sampling based approach to discover and model continuous families of manipulations for soft robot hands. We give an overview of the soft foam robots in production in our lab and describe novel algorithms developed to characterize manipulation families for such robots. Our approach consists of sampling a space of manipulation actions, constructing Gaussian Mixture Model representations covering successful regions, and refining the results to create continuous successful regions representing the manipulation family. The space of manipulation actions is very high dimensional; we consider models with and without dimensionality reduction and provide a rigorous approach to compare models across different dimensions by comparing coverage of an unbiased test dataset in the full dimensional parameter space. Results show that some dimensionality reduction ismore »typically useful in populating the models, but without our technique, the amount of dimensionality reduction to use is difficult to predict ahead of time and can depend on the hand and task. The models we produce can be used to plan and carry out successful, robust manipulation actions and to compare competing robot hand designs.« less
  5. Soft continuum manipulators provide a safe alternative to traditional rigid manipulators, because their bodies can absorb and distribute contact forces. Soft manipulators have near infinite potential degrees of freedom, but a limited number of control inputs. This underactuation means soft continuum manipulators often lack either the controllability or the dexterity to achieve desired tasks. In this work, we present an extension of McKibben actuators, which have well-known models, that increases the controllable degrees of freedom using active reconfiguration of the constraining fibers. These Active Fiber Reinforced Elastomeric Enclosures (AFREEs) preform some combination of length change and twisting, depending on the fiber configuration. Experimental results shows that by changing the fiber angles within a range of -30 to 30 degrees and actuating the resulting configuration between 10.3 kPa and 24.1 kPa, we can achieve twists between ± 60 degrees and displacements between -2 and 4 mm. By additionally controlling the fiber lengths and pressure, we can modify the AFREE kinematics further, creating dynamic behaviors and trajectories of actuation. The presented actuator creates the possibility to reconFigure actuator kinematics to meet desired soft robot motions.