skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Lightweight, High-Extension, Planar 3-Degree-of-Freedom Manipulator Using Pinched Bistable Tapes
To facilitate sensing and physical interaction in remote and/or constrained environments, high-extension, lightweight robot manipulators are easier to transport and reach substantially further than traditional serial chain manipulators. We propose a novel planar 3-degree-of-freedom manipulator that achieves low weight and high extension through the use of a pair of spooling bistable tapes, commonly used in self-retracting tape measures, which are pinched together to form a reconfigurable revolute joint. The pinching action flattens the tapes to produce a localized bending region, resulting in a revolute joint that can change its orientation by cable tension and its location on the tapes though friction-driven movement of the pinching mechanism. We present the design, implementation, kinematic modeling, stiffness behavior of the revolute joint, and quasi-static performance of this manipulator. In particular, we demonstrate the ability of the manipulator to reach specified targets in free space, reach a 2D target with various orientations, and maintain an end-effector angle or stationary bending point while changing the other. The long-term goal of this work is to integrate the manipulator with an aerial robot to enable more capable aerial manipulation.  more » « less
Award ID(s):
2024247
PAR ID:
10379139
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Robotics and Automation
Page Range / eLocation ID:
1190 to 1196
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Numerous soft and continuum robotic manipulators have demonstrated their potential for compliant operation in highly unstructured environments or near people. Despite their recent popularity, modeling of their smooth bending deformation remains a challenge. For soft continuum manipulators, the widespread, constant curvature approach to modeling is inadequate for modeling some deformations that occur in practice, such as combined bending and twisting deformations. In this paper, we extend the classical Cosserat rod approach to model a variable-length, pneumatic soft continuum arm. We model the deformation of a pneumatically driven soft continuum manipulator, and the model is then compared against experimental data collected from a three degree of freedom, pneumatically actuated, soft continuum manipulator. The model shows good agreement in capturing the overall behavior of the bending deformation, with mean Euclidean error at the tip of the robot of 2.48 cm for a 22 cm long robot. In addition, the model shows good numerical stability for simulating long duration computations. 
    more » « less
  2. null (Ed.)
    Abstract An extensible continuum manipulator (ECM) has specific advantages over its nonextensible counterparts. For instance, in certain applications, such as minimally invasive surgery or pipe inspection, the base motion might be limited or disallowed. The additional extensibility provides the robot with more dexterous manipulation and a larger workspace. Existing continuum robot designs achieve extensibility mainly through artificial muscle/pneumatic, extensible backbone, concentric tube, and base extension, etc. This article proposes a new way to achieve this additional motion degree-of-freedom by taking advantage of the rigid coupling hybrid mechanism concept and a flexible parallel mechanism. More specifically, a rack and pinion set is used to transmit the motion of the i-th subsegment to drive the (i+1)-th subsegment. A six-chain flexible parallel mechanism is used to generate the desired spatial bending and one extension mobility for each subsegment. This way, the new manipulator can achieve tail-like spatial bending and worm-like extension at the same time. Simplified kinematic analyses are conducted to estimate the workspace and the motion nonuniformity. A proof-of-concept prototype was integrated to verify the mechanism’s mobility and to evaluate the kinematic model accuracy. The results show that the proposed mechanism achieved the desired mobilities with a maximum extension ratio of 32.2% and a maximum bending angle of 80 deg. 
    more » « less
  3. null (Ed.)
    Abstract An extensible continuum manipulator (ECM) has specific advantages over its non-extensible counterparts. For instance, in certain applications, such as minimally invasive surgery or tube inspection, the base motion might be limited or disallowed. The additional extensibility provides the robot with more dexterous manipulation and larger workspace. Existing continuum robot designs achieve extensibility mainly through artificial muscle/pneumatic, extensible backbone, concentric tube, and base extension etc. This paper proposes a new way to achieve this additional motion degree of freedom by taking advantage of the rigid coupling hybrid mechanism concept and a flexible parallel mechanism. More specifically, a rack and pinion set is used to transmit the motion of the i-th subsegment to drive the (i+1)-th subsegment. A six-chain flexible parallel mechanism is used to generate the desired spatial bending and one extension mobility for each subsegment. This way, the new manipulator is able to achieve tail-like spatial bending and worm-like extension at the same time. A proof-of-concept prototype was integrated to verify the mobility of the new mechanism. Corresponding kinematic analyses are conducted to estimate the workspace and the motion non-uniformity. 
    more » « less
  4. Robotic manipulators are widely used in various industries for complex and repetitive tasks. However, they remain vulnerable to unexpected hardware failures. In this study, we address the challenge of enabling a robotic manipulator to complete tasks despite joint malfunctions. Specifically, we develop a reinforcement learning (RL) framework to adaptively compensate for a nonfunctional joint during task execution. Our experimental platform is the Franka robot with seven degrees of freedom (DOFs). We formulate the problem as a partially observable Markov decision process (POMDP), where the robot is trained under various joint failure conditions and tested in both seen and unseen scenarios. We consider scenarios where a joint is permanently broken and where it functions intermittently. Additionally, we demonstrate the effectiveness of our approach by comparing it with traditional inverse kinematics-based control methods. The results show that the RL algorithm enables the robot to successfully complete tasks even with joint failures, achieving a high success rate with an average rate of 93.6%. This showcases its robustness and adaptability. Our findings highlight the potential of RL to enhance the resilience and reliability of robotic systems, making them better suited for unpredictable environments. 
    more » « less
  5. Unmanned aerial manipulators have been growing in popularity over the years, alongside the complexity of the tasks they undertake. Many of these tasks include physical interaction with the environment, where a force control or sensing component is desirable. In these types of applications, the forces and torques, or the wrench, acting on the robot by the environment must be known. This paper presents a wrench observer based on an Extended Kalman filter (EKF), and compares it against acceleration-based, momentum-based, and hybrid wrench observers. Simulations using each of these observers are conducted with an underactuated aerial manipulator composed of a hexarotor with coplanar propellers and a 2-DOF manipulator. Measurement noise on par with what is expected in real-world applications is added to the sensor signals, and results show that the EKF-based wrench observer is superior at noise reduction and wrench estimation in many cases compared to the other observers. 
    more » « less