- Award ID(s):
- 1739295
- PAR ID:
- 10109193
- Date Published:
- Journal Name:
- American Control Conference 2019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Guruswami, Venkatesan (Ed.)We study two recent combinatorial contract design models, which highlight different sources of complexity that may arise in contract design, where a principal delegates the execution of a costly project to others. In both settings, the principal cannot observe the choices of the agent(s), only the project’s outcome (success or failure), and incentivizes the agent(s) using a contract, a payment scheme that specifies the payment to the agent(s) upon a project’s success. We present results that resolve open problems and advance our understanding of the computational complexity of both settings. In the multi-agent setting, the project is delegated to a team of agents, where each agent chooses whether or not to exert effort. A success probability function maps any subset of agents who exert effort to a probability of the project’s success. For the family of submodular success probability functions, Dütting et al. [2023] established a poly-time constant factor approximation to the optimal contract, and left open whether this problem admits a PTAS. We answer this question on the negative, by showing that no poly-time algorithm guarantees a better than 0.7-approximation to the optimal contract. For XOS functions, they give a poly-time constant approximation with value and demand queries. We show that with value queries only, one cannot get any constant approximation. In the multi-action setting, the project is delegated to a single agent, who can take any subset of a given set of actions. Here, a success probability function maps any subset of actions to a probability of the project’s success. Dütting et al. [2021a] showed a poly-time algorithm for computing an optimal contract for gross substitutes success probability functions, and showed that the problem is NP-hard for submodular functions. We further strengthen this hardness result by showing that this problem does not admit any constant factor approximation. Furthermore, for the broader class of XOS functions, we establish the hardness of obtaining a n^{-1/2+ε}-approximation for any ε > 0.more » « less
-
We study a ubiquitous learning challenge in online principal-agent problems during which the principal learns the agent's private information from the agent's revealed preferences in historical interactions. This paradigm includes important special cases such as pricing and contract design, which have been widely studied in recent literature. However, existing work considers the case where the principal can only choose a single strategy at every round to interact with the agent and then observe the agent's revealed preference through their actions. In this paper, we extend this line of study to allow the principal to offer a menu of strategies to the agent and learn additionally from observing the agent's selection from the menu. We provide a thorough investigation of several online principal-agent problem settings and characterize their sample complexities, accompanied by the corresponding algorithms we have developed. We instantiate this paradigm to several important design problems — including Stackelberg (security) games, contract design, and information design. Finally, we also explore the connection between our findings and existing results about online learning in Stackelberg games, and we offer a solution that can overcome a key hard instance of previous work.
-
Trees on farms provide environmental benefits to society and improve agricultural productivity for farmers. We study incentive schemes for afforestation on farms through the lens of contract theory, designing conditional cash transfer schemes that encourage farmers to sustain tree growth. We capture the tree growth process as a Markov chain whose evolution is affected by the agent’s (farmer) actions – e.g., investing costly effort or cutting the tree for firewood. The principal has imperfect information about the agent’s costs and actions taken, and wants to maximize long-run tree survival with minimal payment. We show how to calculate the optimal contract structure in our model: notably, it can involve time-varying payments and may incentivize the agent to join the program but abandon it prematurely.more » « less
-
null (Ed.)We develop a two-stage model to study the strategic interaction between a politician (the principal) and a bureaucrat (the agent) over the level of infrastructure provision with uncertainty about possible weather shocks. The bureaucrat chooses how much effort to contribute to infrastructure maintenance and the politician offers either a lump-sum wage (non-corrupt) contract or proportional bribe (corrupt) contract to induce effort. The degree of uncertainty about weather shocks, the size of the fixed wage, and the level of external monitoring to detect corruption all interact to affect (a) the politician's choice of contract and (b) whether this choice improves infrastructure outcomes. Our results suggest that curbing corruption is most likely to yield improvements in infrastructure provision when climate uncertainty is low and when bureaucratic wages are relatively high. If climate uncertainty is high, increasing monitoring has an unambiguous negative effect on infrastructure provision. Previous literature has focused either on public goods provision but not corruption or on bribery in a regulatory context that lacks public goods provision. We extend both literatures by analyzing how bribes between government officials affect a principal's ability to more effectively incentivize public goods provision by her agent.more » « less
-
null (Ed.)Cyber insurance like other types of insurance is a method of risk transfer, where the insured pays a premium in exchange for coverage in the event of a loss. As a result of the reduced risk for the insured and the lack of information on the insurer’s side, the insured is generally inclined to lower its effort, leading to a worse state of security, a common phenomenon known as moral hazard. To mitigate moral hazard, a widely employed concept is premium discrimination, i.e., an agent/insured who exerts higher effort pays less premium. This, however, relies on the insurer’s ability to assess the effort exerted by the insured. In this paper, we study two methods of premium discrimination that rely on two different types of assessment: pre-screening and post-screening. Pre-screening occurs before the insured enters into a contract and can be done at the beginning of each contract period; the result of this process gives the insurer an estimated risk on the insured, which then determines the contract terms. The post-screening mechanism involves at least two contract periods whereby the second-period premium is increased if a loss event occurs during the first period. Prior work shows that both pre-screening and post-screening are generally effective in mitigating moral hazard and increasing the insured’s effort. The analysis in this study shows, however, that the conclusion becomes more nuanced when loss events are rare. Specifically, we show that post-screening is not effective at all with rare losses, while pre-screening can be an effective method when the agent perceives them as rarer than the insurer does; in this case pre-screening improves both the agent’s effort level and the insurer’s profit.more » « less