skip to main content


Title: Pedestrian Flow Optimization to Reduce the Risk of Crowd Disasters through Human-Robot Interaction
Pedestrian flow in densely-populated or congested areas usually presents irregular or turbulent motion state due to competitive behaviors of individual pedestrians, which reduces flow efficiency and raises the risk of crowd accidents. Effective pedestrian flow regulation strategies are highly valuable for flow optimization. Existing studies seek for optimal design of indoor architectural features and spatial placement of pedestrian facilities for the purpose of flow optimization. However, once placed, the stationary facilities are not adaptive to real-time flow changes. In this paper, we investigate the problem of regulating two merging pedestrian flows in a bottleneck area using a mobile robot moving among the pedestrian flows. The pedestrian flows are regulated through dynamic human-robot interaction (HRI) during their collective motion. We adopt an adaptive dynamic programming (ADP) method to learn the optimal motion parameters of the robot in real time, and the resulting outflow through the bottleneck is maximized with the crowd pressure reduced to avoid potential crowd disasters. The proposed algorithm is a data-driven approach that only uses camera observation of pedestrian flows without explicit models of pedestrian dynamics and HRI. Extensive simulation studies are performed in both Matlab and a robotic simulator to verify the proposed approach and evaluate the performances  more » « less
Award ID(s):
1833005
NSF-PAR ID:
10109449
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE transactions on emerging topics in computational intelligence
ISSN:
2471-285X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pedestrian regulation can prevent crowd accidents and improve crowd safety in densely populated areas. Recent studies use mobile robots to regulate pedestrian flows for desired collective motion through the effect of passive human-robot interaction (HRI). This paper formulates a robot motion planning problem for the optimization of two merging pedestrian flows moving through a bottleneck exit. To address the challenge of feature representation of complex human motion dynamics under the effect of HRI, we propose using a deep neural network to model the mapping from the image input of pedestrian environments to the output of robot motion decisions. The robot motion planner is trained end-to-end using a deep reinforcement learning algorithm, which avoids hand-crafted feature detection and extraction, thus improving the learning capability for complex dynamic problems. Our proposed approach is validated in simulated experiments, and its performance is evaluated. The results demonstrate that the robot is able to find optimal motion decisions that maximize the pedestrian outflow in different flow conditions, and the pedestrian-accumulated outflow increases significantly compared to cases without robot regulation and with random robot motion. 
    more » « less
  2. null (Ed.)
    In this paper, we propose a novel online algorithm for motion similarity measurements during human-robot interaction (HRI). Specifically, we formulate a Segment-based Online Dynamic Time Warping (SODTW) algorithm that can be used for understanding of repeated and cyclic human motions, in the context of rehabilitation or social interaction. The algorithm can estimate both the human-robot motion similarity and the time delay to initiate motion and combine these values as a metric to adaptively select appropriate robot imitation repertoires. We validated the algorithm offline by post-processing experimental data collected from a cohort of 55 subjects during imitation episodes with our social robot Zeno. Furthermore, we implemented the algorithm online on Zeno and collected further experimental results with 13 human subjects. These results show that the algorithm can reveal important features of human movement including the quality of motion and human reaction time to robot stimuli. Moreover, the robot can adapt to appropriate human motion speeds based on similarity measurements calculated using this algorithm, enabling future adaptive rehabilitation interventions for conditions such as Autism Spectrum Disorders (ASD). 
    more » « less
  3. In this paper, we propose MetaMobi, a novel spatio-temporal multi-dots connectivity-aware modeling and Meta model update approach for crowd Mobility learning. MetaMobi analyzes real-world Wi-Fi association data collected from our campus wireless infrastructure, with the goal towards enabling a smart connected campus. Specifically, MetaMobi aims at addressing the following two major challenges with existing crowd mobility sensing system designs: (a) how to handle the spatially, temporally, and contextually varying features in large-scale human crowd mobility distributions; and (b) how to adapt to the impacts of such crowd mobility patterns as well as the dynamic changes in crowd sensing infrastructures. To handle the first challenge, we design a novel multi-dots connectivity-aware learning approach, which jointly learns the crowd flow time series of multiple buildings with fusion of spatial graph connectivities and temporal attention mechanisms. Furthermore, to overcome the adaptivity issues due to changes in the crowd sensing infrastructures (e.g., installation of new ac- cess points), we further design a novel meta model update approach with Bernoulli dropout, which mitigates the over- fitting behaviors of the model given few-shot distributions of new crowd mobility datasets. Extensive experimental evaluations based on the real-world campus wireless dataset (including over 76 million Wi-Fi association and disassociation records) demonstrate the accuracy, effectiveness, and adaptivity of MetaMobi in forecasting the campus crowd flows, with 30% higher accuracy compared to the state-of-the-art approaches. 
    more » « less
  4. When robots operate in real-world off-road environments with unstructured terrains, the ability to adapt their navigational policy is critical for effective and safe navigation. However, off-road terrains introduce several challenges to robot navigation, including dynamic obstacles and terrain uncertainty, leading to inefficient traversal or navigation failures. To address these challenges, we introduce a novel approach for adaptation by negotiation that enables a ground robot to adjust its navigational behaviors through a negotiation process. Our approach first learns prediction models for various navigational policies to function as a terrain-aware joint local controller and planner. Then, through a new negotiation process, our approach learns from various policies' interactions with the environment to agree on the optimal combination of policies in an online fashion to adapt robot navigation to unstructured off-road terrains on the fly. Additionally, we implement a new optimization algorithm that offers the optimal solution for robot negotiation in real-time during execution. Experimental results have validated that our method for adaptation by negotiation outperforms previous methods for robot navigation, especially over unseen and uncertain dynamic terrains. 
    more » « less
  5. We present GhostAR, a time-space editor for authoring and acting Human-Robot-Collaborative (HRC) tasks in-situ. Our system adopts an embodied authoring approach in Augmented Reality (AR), for spatially editing the actions and programming the robots through demonstrative role-playing. We propose a novel HRC workflow that externalizes user’s authoring as demonstrative and editable AR ghost, allowing for spatially situated visual referencing, realistic animated simulation, and collaborative action guidance. We develop a dynamic time warping (DTW) based collaboration model which takes the real-time captured motion as inputs, maps it to the previously authored human actions, and outputs the corresponding robot actions to achieve adaptive collaboration. We emphasize an in-situ authoring and rapid iterations of joint plans without an offline training process. Further, we demonstrate and evaluate the effectiveness of our workflow through HRC use cases and a three-session user study. 
    more » « less