skip to main content

Title: X-ray emission spectroscopy: an effective route to extract site occupation of cations
Cation site occupation is an important determinant of materials properties, especially in a complex system with multiple cations such as in ternary spinels. Many methods for extracting the cation site information have been explored in the past, including analysis of spectra obtained through K-edge X-ray absorption spectroscopy (XAS). In this work, we measure the effectiveness of X-ray emission spectroscopy (XES) for determining the cation site occupation. As a test system we use spinel phase Co x Mn 3−x O 4 nanoparticles contaminated with CoO phases because Co and Mn can occupy all cation sites and the impurity simulates typical products of oxide syntheses. We take advantage of the spin and oxidation state sensitive Kβ 1,3 peak obtained using XES and demonstrate that XES is a powerful and reliable technique for determining site occupation in ternary spinel systems. Comparison between the extended X-ray absorption fine structure (EXAFS) and XES techniques reveals that XES provides not only the site occupation information as EXAFS, but also additional information on the oxidation states of the cations at each site. We show that the error for EXAFS can be as high as 35% which makes the results obtained ambiguous for certain stoichiometries, whereas for XES, more » the error determined is consistently smaller than 10%. Thus, we conclude that XES is a superior and a far more accurate method than XAS in extracting cation site occupation in spinel crystal structures. « less
Authors:
; ; ; ;
Award ID(s):
1809429 1149036 1507753
Publication Date:
NSF-PAR ID:
10109513
Journal Name:
Physical Chemistry Chemical Physics
Volume:
20
Issue:
46
Page Range or eLocation-ID:
28990 to 29000
ISSN:
1463-9076
Sponsoring Org:
National Science Foundation
More Like this
  1. Ammonia has emerged as a promising energy carrier owing to its carbon neutral content and low expense in long-range transportation. Therefore, development of a specific pathway to release the energy stored in ammonia is therefore in urgent demand. Electrochemical oxidation provides a convenient and reliable route to attain efficient utilization of ammonia. Here, we report that the high entropy (Mn, Fe, Co, Ni, Cu)3O4 oxides can achieve high electrocatalytic activity for ammonia oxidation reaction (AOR) in non-aqueous solutions. The AOR onset overpotential of (Mn, Fe, Co, Ni, Cu)3O4 is 0.70 V, which is nearly 0.2 V lower than that of their most active single metal cation counterpart. The mass spectroscopy study reveals that (Mn, Fe, Co, Ni, Cu)3O4 preferentially oxidizes ammonia to environmentally friendly diatomic nitrogen with a Faradic efficiency of over 85%. The X-ray photoelectron spectroscopy (XPS) result indicates that the balancing metal d-band of Mn and Cu cations helps retain a long-lasting electrocatalytic activity. Overall, this work introduces a new family of earth-abundant transition metal high entropy oxide electrocatalysts for AOR, thus heralding a new paradigm of catalyst design for enabling ammonia as an energy carrier.
  2. Abstract Strained materials can exhibit drastically modified physical properties in comparison to their fully relaxed analogues. We report on the x-ray absorption spectra (XAS) and magnetic circular dichroism (XMCD) of a strained NiFe 2 O 4 inverse spinel film grown on a symmetry matched single crystal MgGa 2 O 4 substrate. The Ni XAS spectra exhibit a sizable difference in the white line intensity for measurements with the x-ray electric field parallel to the film plane (normal incidence) vs when the electric field is at an angle (off-normal). A considerable difference is also observed in the Fe L 2,3 XMCD spectrum. Modeling of the XAS and XMCD spectra indicate that the modified energy ordering of the cation 3 d states in the strained film leads to a preferential filling of 3 d states with out-of-plane character. In addition, the results point to the utility of x-ray spectroscopy in identifying orbital populations even with elliptically polarized x-rays.
  3. We report the synthesis and characterization of as-grown SrFexMn1-xO2.5 epitaxial films, which were also subjected to post-growth oxidation and topotactic fluorination to obtain SrFexMn1-xO3 and SrFexMn1-xO(2.5-d)Fg films. We show how both the B-site cation and anion composition influence the structural, electronic, and optical properties of this family of perovskite materials. The Fe substitution of Mn in SrMnO2.5 gradually expands the c-axis parameter, as indicated by X-ray diffraction. With increasing x, the F content incorporated under identical fluorination conditions increases, reaching its maximum in SrFeO(2.5-d)Fg. In the compounds with mixed B-site occupation, the Fe 2p photoemission peaks are shifted upon fluorination while the Mn 2p peaks are not, suggesting inductive effects lead to asymmetric responses in how F alters the Mn and Fe bonds. Electronic transport measurements reveal all compounds are insulators, with the exception of SrFeO3, and demonstrate that fluorination increases resistivity for all values of x. Optical absorption spectra in the SrFexMn1-xO2.5 and SrFexMn1-xO3 films evolve systematically as a function of x, consistent with a physical scenario in which optical changes with Fe substitution arise from a linear combination of Mn and Fe 3d bands within the electronic structure. In contrast, the F incorporation induces non-linear changes to themore »optical response, suggesting a more complex impact on the electronic structure in materials with concurrent B-site and anion site substitution.« less
  4. This study investigated the reaction kinetics on the oxidative transformation of lead( ii ) minerals by free chlorine (HOCl) and free bromine (HOBr) in drinking water distribution systems. According to chemical equilibrium predictions, lead( ii ) carbonate minerals, cerussite PbCO 3(s) and hydrocerussite Pb 3 (CO 3 ) 2 (OH) 2(s) , and lead( ii ) phosphate mineral, chloropyromorphite Pb 5 (PO 4 ) 3 Cl (s) are formed in drinking water distribution systems in the absence and presence of phosphate, respectively. X-ray absorption near edge spectroscopy (XANES) data showed that at pH 7 and a 10 mM alkalinity, the majority of cerussite and hydrocerussite was oxidized to lead( iv ) mineral PbO 2(s) within 120 minutes of reaction with chlorine (3 : 1 Cl 2  : Pb( ii ) molar ratio). In contrast, very little oxidation of chloropyromorphite occurred. Under similar conditions, oxidation of lead( ii ) carbonate and phosphate minerals by HOBr exhibited a reaction kinetics that was orders of magnitude faster than by HOCl. Their end oxidation products were identified as mainly plattnerite β-PbO 2(s) and trace amounts of scrutinyite α-PbO 2(s) based on X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopic analysis. A kinetic model wasmore »established based on the solid-phase experimental data. The model predicted that in real drinking water distribution systems, it takes 0.6–1.2 years to completely oxidize Pb( ii ) minerals in the surface layer of corrosion scales to PbO 2(s) by HOCl without phosphate, but only 0.1–0.2 years in the presence of bromide (Br − ) due the catalytic effects of HOBr generation. The model also predicts that the addition of phosphate will significantly inhibit Pb( ii ) mineral oxidation by HOCl, but only be modestly effective in the presence of Br − . This study provides insightful understanding on the effect of residual disinfectant on the oxidation of lead corrosion scales and strategies to prevent lead release from drinking water distribution systems.« less
  5. Abstract In this study, we investigated an unusual natural Mn oxide hollandite-group mineral from the Kohare Mine, Iwate Prefecture, Japan, that has predominantly water molecules in the tunnels, with K, Na, Ca, and Ba. The specimens are labeled as type manjiroite, but our analyses show that Na is not the dominant tunnel species, nor is it even the primary tunnel cation, suggesting either an error in the original analyses or significant compositional variation within samples from the type locality. Chemical analyses, X-ray photoelectron spectroscopy, and thermal gravimetric analysis measurements combined with Rietveld refinement results using synchrotron X-ray powder diffraction data suggest the chemical formula: (K0.19Na0.17Ca0.03Ba0.01H2O1.60)(Mn5.024+Mn2.823+Al0.14Fe0.02)O13.47(OH)2.53. Our analyses indicate that water is the primary tunnel species, and although water has been reported as a component in natural hollandites, this is the first detailed study of the crystal structure and dehydration behavior of a natural hydrous hollandite with water as the predominant tunnel species. This work underscores the rarity of natural Na-rich hollandite phases and focuses new attention on the role of hydrous components of hollandite-like phases in determining their capacities to exchange or accommodate various cations, such as Li+, Na+, Ba2+, Pb2+, and K+ in natural systems.