skip to main content


Title: CHILES: H   i morphology and galaxy environment at z  = 0.12 and z  = 0.17
Award ID(s):
1814682
NSF-PAR ID:
10109620
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
484
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2234 to 2256
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present 10 main-sequence ALPINE galaxies (log (M/M⊙) = 9.2−11.1 and ${\rm SFR}=23-190\, {\rm M_{\odot }\, yr^{-1}}$) at z ∼ 4.5 with optical [O ii] measurements from Keck/MOSFIRE spectroscopy and Subaru/MOIRCS narrow-band imaging. This is the largest such multiwavelength sample at these redshifts, combining various measurements in the ultraviolet, optical, and far-infrared including [C ii]158 $\mu$m line emission and dust continuum from ALMA and H α emission from Spitzer photometry. For the first time, this unique sample allows us to analyse the relation between [O ii] and total star-formation rate (SFR) and the interstellar medium (ISM) properties via [O ii]/[C ii] and [O ii]/H α luminosity ratios at z ∼ 4.5. The [O ii]−SFR relation at z ∼ 4.5 cannot be described using standard local descriptions, but is consistent with a metal-dependent relation assuming metallicities around $50{{\ \rm per\ cent}}$ solar. To explain the measured dust-corrected luminosity ratios of $\log (L_{\rm [OII]}/L_{\rm [CII]}) \sim 0.98^{+0.21}_{-0.22}$ and $\log (L_{\rm [OII]}/L_{\rm H\alpha }) \sim -0.22^{+0.13}_{-0.15}$ for our sample, ionization parameters log (U) < −2 and electron densities $\log (\rm n_e / {\rm [cm^{-3}]}) \sim 2.5-3$ are required. The former is consistent with galaxies at z ∼ 2−3, however lower than at z > 6. The latter may be slightly higher than expected given the galaxies’ specific SFR. The analysis of this pilot sample suggests that typical log (M/M⊙) > 9 galaxies at z ∼ 4.5 to have broadly similar ISM properties as their descendants at z ∼ 2 and suggest a strong evolution of ISM properties since the epoch of reionization at z > 6.

     
    more » « less
  2. null (Ed.)
    ABSTRACT Outflows from supermassive black holes (SMBHs) play an important role in the co-evolution of themselves, their host galaxies, and the larger scale environments. Such outflows are often characterized by emission and absorption lines in various bands and in a wide velocity range blueshifted from the systematic redshift of the host quasar. In this paper, we report a strong broad line region (BLR) outflow from the z ≈ 4.7 quasar BR 1202-0725 based on the high-resolution optical spectrum taken with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph installed on the 6.5 m Magellan/Clay telescope, obtained from the ‘Probing the He ii re-Ionization ERa via Absorbing C iv Historical Yield’ (HIERACHY) project. This rest-frame ultraviolet (UV) spectrum is characterized by a few significantly blueshifted broad emission lines from high ions; the most significant one is the C iv line at a velocity of $\sim -6500$ km s−1 relative to the H α emission line, which is among the highest velocity BLR outflows in observed quasars at z > 4. The measured properties of UV emission lines from different ions, except for O i and Ly α, also follow a clear trend that higher ions tend to be broader and outflow at higher average velocities. There are multiple C iv and Si iv absorbing components identified on the blue wings of the corresponding emission lines, which may be produced by either the outflow or the intervening absorbers. 
    more » « less
  3. ABSTRACT

    We present the first detection of the [N ii] 122 $\mu$m and [O iii] 52 $\mu$m lines for a reionization-epoch galaxy. Based on these lines and previous [C ii] 158 $\mu$m and [O iii] 88 $\mu$m measurements, using two different radiative transfer models of the interstellar medium, we estimate an upper limit on electron density of ≲500 cm−3 and an approximate gas-phase metallicity of Z/Z⊙ ∼ 1.1 ± 0.2 for A1689-zD1, a gravitationally lensed dusty galaxy at z = 7.133. Other measurements or indicators of metallicity so far in galaxy interstellar media at z ≳ 6 are typically an order of magnitude lower than this. The unusually high metallicity makes A1689-zD1 inconsistent with the fundamental metallicity relation, although there is likely significant dust obscuration of the stellar mass, which may partly resolve the inconsistency. Given a solar metallicity, the dust-to-metals ratio is a factor of several lower than expected, hinting that galaxies beyond z ∼ 7 may have lower dust formation efficiency. Finally, the inferred nitrogen enrichment compared to oxygen, on which the metallicity measurement depends, indicates that star formation in the system is older than about 250 Myr, pushing the beginnings of this galaxy to z > 10.

     
    more » « less
  4. ABSTRACT

    Motivated by spectroscopic confirmation of three overdense regions in the COSMOS field at z ∼ 3.35, we analyse the uniquely deep multiwavelength photometry and extensive spectroscopy available in the field to identify any further related structure. We construct a three-dimensional density map using the Voronoi tesselation Monte Carlo method and find additional regions of significant overdensity. Here, we present and examine a set of six overdense structures at 3.20 < z < 3.45 in the COSMOS field, the most well-characterized of which, PCl J0959 + 0235, has 80 spectroscopically confirmed members and an estimated mass of 1.35 × 1015 M⊙, and is modelled to virialize at z ∼ 1.5−2.0. These structures contain 10 overdense peaks with >5σ overdensity separated by up to 70 cMpc, suggestive of a proto-supercluster similar to the Hyperion system at z ∼ 2.45. Upcoming photometric surveys with JWST such as COSMOS-Web, and further spectroscopic follow-up will enable more extensive analysis of the evolutionary effects that such an environment may have on its component galaxies at these early times.

     
    more » « less
  5. ABSTRACT

    We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete.

     
    more » « less