skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry
Reductive electrosynthesis has faced long-standing challenges in applications to complex organic substrates at scale. Here, we show how decades of research in lithium-ion battery materials, electrolytes, and additives can serve as an inspiration for achieving practically scalable reductive electrosynthetic conditions for the Birch reduction. Specifically, we demonstrate that using a sacrificial anode material (magnesium or aluminum), combined with a cheap, nontoxic, and water-soluble proton source (dimethylurea), and an overcharge protectant inspired by battery technology [tris(pyrrolidino)phosphoramide] can allow for multigram-scale synthesis of pharmaceutically relevant building blocks. We show how these conditions have a very high level of functional-group tolerance relative to classical electrochemical and chemical dissolving-metal reductions. Finally, we demonstrate that the same electrochemical conditions can be applied to other dissolving metal–type reductive transformations, including McMurry couplings, reductive ketone deoxygenations, and epoxide openings.  more » « less
Award ID(s):
1740656
PAR ID:
10109648
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science
Volume:
363
Issue:
6429
ISSN:
0036-8075
Page Range / eLocation ID:
838 to 845
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multicomponent transition metal oxides are among the most successful lithium-ion battery cathode materials, and many previous reports have described the sensitivity of final electrochemical performance of the active materials to the detailed composition and processing. Coprecipitation of a precursor template is a popular, scalable route to synthesize these transition metal oxide cathode materials because of the homogeneous mixing of the transition metals within the particles, and the morphology control provided by the precursors. However, the deviation of the precursor composition from feed conditions is a challenge that has generally not been reported in previous studies. Using a target final material of the high voltage spinel LiMn 1.5 Ni 0.5 O 4 as an example, we show in this study that the compositional deviation caused by coprecipitation can be significant under certain conditions, impacting the calcined final material structure and electrochemical properties. The study herein provides insights into the role of solution equilibrium and rate of precipitation of the transition metals during precipitate formation on precursor, and thus final active material, composition. Such knowledge is necessary to rationally predict and tune multicomponent battery precursor compositions synthesized via coprecipitation with high levels of accuracy. 
    more » « less
  2. Sacrificial anodes composed of inexpensive metals such as Zn, Fe and Mg are widely used to support electrochemical nickel-catalyzed cross-electrophile coupling (XEC) reactions, in addition to other reductive electrochemical transformations. Such anodes are appealing because they provide a stable counter-electrode potential and typically avoid interference with the reductive chemistry. The present study outlines development of an electrochemical Ni-catalyzed XEC reaction that streamlines access to a key pharmaceutical intermediate. Metal ions derived from sacrificial anode oxidation, however, directly contribute to homocoupling and proto-dehalogenation side products that are commonly formed in chemical and electrochemical Ni-catalyzed XEC reactions. Use of a divided cell limits interference by the anode-derived metal ions and supports high product yield with negligible side product formation, introducing a strategy to overcome one of the main limitations of Ni-catalyzed XEC. 
    more » « less
  3. Abstract The commercialization of zinc metal batteries (ZMBs) for large‐scale energy storage is hindered by challenges such as dendrite formation, the hydrogen evolution reaction (HER), and passivation/corrosion, which lead to poor stability of zinc metal anodes. HER is a primary contributor to this instability, and despite efforts to enhance ZMB cyclability, a significant knowledge gap remains regarding the origin of HER in these systems. Prior works, based primarily on theoretical calculations with minimal experimental support, suggest that HER originates from Zn2⁺‐solvated water. For the first time, by employing scanning electrochemical microscopy (SECM), and electrochemical mass spectrometry (ECMS), in real‐time the inherently intertwined nature of Zn electrodeposition and H₂ liberation is revealed, both exhibiting the same onset potential in voltammetry. The findings show that water molecules surrounding Zn2⁺ ions undergo reduction simultaneously during Zn2⁺ deposition. Additionally, ECMS conducted under chronopotentiometric/galvanostatic conditions at battery‐relevant current densities elucidates why elevated electrolyte concentrations enhance the prolonged cyclability of ZMBs. Understanding the origin of HER opens avenues for developing high‐performance, reliable aqueous ZMBs, addressing key challenges in their commercialization and advancing their technological capabilities. 
    more » « less
  4. Abstract Next‐generation high‐energy‐density batteries require ideally stable metal anodes, for which smooth metal deposits during battery recharging are considered a sign of interfacial stability that can ensure high efficiency and long cycle life. With the recent successes, whether the absolute morphological stability guarantees absolute electrochemical stability and safety has emerged as a critical question to be investigated in systematic experiments under practical conditions. Here, the ideally stable ingot‐type sodium metal anode is used as a model system to identify the fast‐charging limits, that is, highest safe current density, of metal anodes. The results show that metal penetration can still occur at relatively low current densities, but the overpotentials at the penetration depend on the pore sizes of the separators and surprisingly follow a simple mathematical model developed as the Young–Laplace overpotential. This study suggests that the success of stable metal batteries with even the ideally smooth metal anode requires the holistic design of the electrolyte, separator, and metal anodes to ensure penetration‐free operation. 
    more » « less
  5. The development of high-performance battery technologies necessitates ultrathin separators with superior mechanical strength and electrochemical properties. We present an innovative 1 µm thick, pinhole-free zeolitic imidazolate framework-8 (ZIF-8) layer, cathodically deposited on an 8 µm thick commercial polypropylene (PP) film in a rapid process, resulting in a ZIF-8@8-µm PP flexible membrane. This crack-free ZIF-8 layer, featuring angstrom-scale pores and chemical polar groups, functions as a Li+ sieve, regulating Li+ transport, controlling Li deposition, and blocking dissolved active cathode materials. It also enhances Li+ diffusion and transference number, extending the Sand’s time for Li dendrite formation. Consequently, the ZIF-8@8-µm PP separator addresses polysulfide shuttling in Li-S batteries and Li dendrite formation in Li-metal batteries, significantly improving their performance compared to conventional separators. Our findings indicate that while the 8-μm PP alone is unsuitable as a battery separator, the ZIF-8@8-μm PP, possesses the mechanical strength and electrochemical properties necessary for developing both Li-S and Li-metal batteries, as well as application in conventional Li-ion batteries with enhanced volumetric energy densities. 
    more » « less