Abstract The formation of Lau Basin records an extreme event of plate tectonics, with the associated Tonga trench exhibiting the fastest retreat in the world (16 cm/yr). Yet paleogeographic reconstructions suggest that seafloor spreading in the Lau Basin only initiated around 6 Ma. This kinematics is difficult to reconcile with our present understanding of how subduction drives plate motions. Using numerical models, we propose that eastward migration of the Lau Ridge concurrent with trench retreat explains both the narrow width and thickened crust of the Lau Basin. To match the slab geometry and basin width along the Tonga‐Kermadec trench, our models suggest that fast trench retreat rate of 16 cm/yr might start ~15 Ma. Tonga slab rollback induced vigorous mantle flow underneath the South Fiji Basin which is driving the extension and thinning of the basin and contributing to its observed deeper bathymetry compared to neighboring basins.
more »
« less
Vulnerability analysis of smallholder farmers to climate variability and change: an agro-ecological system-based approach in the Fincha’a sub-basin of the upper Blue Nile Basin of Ethiopia
- Award ID(s):
- 1639214
- PAR ID:
- 10109668
- Date Published:
- Journal Name:
- Ecological Processes
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2192-1709
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the dynamics of the solar basin— the accumulated population of weakly-interacting particles on bound orbits in the Solar System. We focus on particles starting off on Sun-crossing orbits, corresponding to initial conditions of production inside the Sun, and investigate their evolution over the age of the Solar System. A combination of analytic methods, secular perturbation theory, and direct numerical integration of orbits sheds light on the long- and short-term evolution of a population of test particles orbiting the Sun and perturbed by the planets. Our main results are that the effective lifetime of a solar basin at Earth’s location is 1.20 ± 0.09 Gyr, and that there is annual (semi-annual) modulation of the basin density with known phase and amplitude at the fractional level of 6.5% (2.2%). These results have important implications for direct detection searches of solar basin particles, and the strong temporal modulation signature yields a robust discovery channel. Our simulations can also be interpreted in the context of gravitational capture of dark matter in the Solar System, with consequences for any dark-matter phenomenon that may occur below the local escape velocity.more » « less
An official website of the United States government

