skip to main content


Title: Report from the NOAA Climate Reanalysis Task Force Technical Workshop
The report summarizes the NCRTF workshop, which consisted of a series of presentations and vigorous discussion of NCRTF activities, related developments in the NOAA National Centers for Environmental Prediction (NCEP) and other U.S. weather and climate forecasting centers, and related international efforts. The workshop goals were to 1) highlight advances in these areas across NOAA and at other Federal agencies, international agencies, and universities; 2) identify gaps; 3) improve coordination of future activities to meet the requirements of the diverse array of users of reanalyses; and 4) to strengthen NOAA’s and partner organizations’ development and utilization of new reanalysis and related data sets.  more » « less
Award ID(s):
1635470
NSF-PAR ID:
10109755
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Climate Reanalysis Task Force Technical Workshop
Volume:
OAR CPO-4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This data has been collected and processed as part of the MOSAiC (Multidisciplinary Drifting Observatory for the Study of Arctic Climate) expedition. MOSAiC is a collaborative initiative led by the Alfred Wegener Institute and has received substantial funding from the German Federal Ministry of Education and Research, as well as the US National Science Foundation, Department of Energy, NOAA, and NASA. Numerous other international agencies and institutions have also made significant contributions. The primary objective of this program was to conduct a comprehensive investigation of the evolving Arctic over the course of a year. The expedition took place from October 2019 to October 2020 and was conducted aboard the Research Vessel Ice Breaker (RVIB) Polarstern, involving participants from 20 nations. As part of this submission, we are presenting five distinct datasets. Two of these datasets are related to seawater, two pertain to meltwater, and one pertains to sea ice. The "in-situ" datasets provide information on dissolved methane concentrations and isotope ratios, while the "in-vitro" datasets offer insights into potential methane oxidation rate constants. In the case of sea ice, only "in-vitro" data was collected, as discrete measurements were obtained from another research group. These datasets are the result of the project titled "Collaborative Research: Quantifying microbial controls on the annual cycle of methane and oxygen within the ultraoligotrophic Central Arctic during MOSAiC." The aim of this study was to assess the marine methane metabolism during a one-year period in the Central Arctic Ocean. The results have provided insights into the biogeography of methane hotspots, both in terms of production and oxidation. 
    more » « less
  2. Background and Context: Most large-scale statewide initiatives of the Computer Science for All (CS for All) movement have focused on the classroom level. Critical questions remain about building school and district leadership capacity to support teachers while implementing equitable computer science education that is scalable and sustainable.

    Objective: This statewide research-practice partnership, involving university researchers and school leaders from 14 local education agencies (LEA) from district and county offices, addresses the following research question: What do administrators identify as most helpful for understanding issues related to equitable computer science implementation when engaging with a guide and workshop we collaboratively developed to help leadership in such efforts?

    Method: Participant surveys, interviews, and workshop observations were analyzed to understand best practices for professional development supporting educational leaders.

    Findings: Administrators value computer science professional development resources that: (a) have a clear focus on “equity;” (b) engage with data and examples that deepen understandings of equity; (c) provide networking opportunities; (d) have explicit workshop purpose and activities; and (e) support deeper discussions of computer science implementation challenges through pairing a workshop and a guide.

    Implications: Utilizing Ishimaru and Galloway’s (2014) framework for equitable leadership practices, this study offers an actionable construct for equitable implementation of computer science including (a) how to build equity leadership and vision; (b) how to enact that vision; and (c) how to scale and sustain that vision. While this construct applies to equitable leadership practices more broadly across all disciplines, we found its application particularly useful when explicitly focused on equity leadership practices in computer science.

     
    more » « less
  3. Abstract The CCERS partnership includes collaborators from universities, foundations, education departments, community organizations, and cultural institutions to build a new curriculum. As reported in a study conducted by the Rand Corporation (2011), partnerships among districts, community-based organizations, government agencies, local funders, and others can strengthen learning programs. The curriculum merged project-based learning and Bybee’s 5E model (Note 1) to teach core STEM-C concepts to urban middle school students through restoration science. CCERS has five interrelated and complementary programmatic pillars (see details in the next section). The CCERS curriculum encourages urban middle school students to explore and participate in project-based learning activities restoring the oyster population in and around New York Harbor. In Melaville, Berg and Blank’s Community Based Learning (2001) there is a statement that says, “Education must connect subject matter with the places where students live and the issues that affect us all”. Lessons engage students and teachers in long-term restoration ecology and environmental monitoring projects with STEM professionals and citizen scientists. In brief, partners have created curriculums for both in-school and out-of-school learning programs, an online platform for educators and students to collaborate, and exhibits with community partners to reinforce and extend both the educators’ and their students’ learning. Currently CCERS implementation involves: • 78 middle schools • 127 teachers • 110 scientist volunteers • Over 5000 K-12 students In this report, we present summative findings from data collected via surveys among three cohorts of students whose teachers were trained by the project’s curriculum and findings from interviews among project leaders to answer the following research questions: 1. Do the five programmatic pillars function independently and collectively as a system of interrelated STEM-C content delivery vehicles that also effectively change students’ and educators’ disposition towards STEM-C learning and environmental restoration and stewardship? 2. What comprises the "curriculum plus community enterprise" local model? 3. What are the mechanisms for creating sustainability and scalability of the model locally during and beyond its five-year implementation? 4. What core aspects of the model are replicable? Findings suggest the program improved students’ knowledge in life sciences but did not have a significant effect on students’ intent to become a scientist or affinity for science. Published by Sciedu Press 1 ISSN 2380-9183 E-ISSN 2380-9205 http://irhe.sciedupress.com International Research in Higher Education Vol. 3, No. 4; 2018 Interviews with project staff indicated that the key factors in the model were its conservation mission, partnerships, and the local nature of the issues involved. The primary mechanisms for sustainability and scalability beyond the five-year implementation were the digital platform, the curriculum itself, and the dissemination (with over 450 articles related to the project published in the media and academic journals). The core replicable aspects identified were the digital platform and adoption in other Keystone species contexts. 
    more » « less
  4. In the 21st Century, research is increasingly data- and computation-driven. Researchers, funders, and the larger community today emphasize the traits of openness and reproducibility. In March 2017, 13 mostly early-career research leaders who are building their careers around these traits came together with ten university leaders (presidents, vice presidents, and vice provosts), representatives from four funding agencies, and eleven organizers and other stakeholders in an NIH- and NSF-funded one-day, invitation-only workshop titled "Imagining Tomorrow's University." Workshop attendees were charged with launching a new dialog around open research – the current status, opportunities for advancement, and challenges that limit sharing. The workshop examined how the internet-enabled research world has changed, and how universities need to change to adapt commensurately, aiming to understand how universities can and should make themselves competitive and attract the best students, staff, and faculty in this new world. During the workshop, the participants re-imagined scholarship, education, and institutions for an open, networked era, to uncover new opportunities for universities to create value and serve society. They expressed the results of these deliberations as a set of 22 principles of tomorrow's university across six areas: credit and attribution, communities, outreach and engagement, education, preservation and reproducibility, and technologies. Activities that follow on from workshop results take one of three forms. First, since the workshop, a number of workshop authors have further developed and published their white papers to make their reflections and recommendations more concrete. These authors are also conducting efforts to implement these ideas, and to make changes in the university system.  Second, we plan to organise a follow-up workshop that focuses on how these principles could be implemented. Third, we believe that the outcomes of this workshop support and are connected with recent theoretical work on the position and future of open knowledge institutions. 
    more » « less
  5. The project mission was to organize a workshop aimed to explore how the US data science community can cooperate with and benefit from collaborations with partners in Serbia and the West Balkan region. The scope included fundamental data science methods and high-impact applications related to big data processing, security and privacy in critical infrastructures, biomedical informatics, and computational archeology. The proposed workshop facilitated closing the gap between data science research in the US and Serbia and the region and brought together data scientists with researchers from disciplines that until recently had little exposure to data science methods, potentially enabling collaborative breakthroughs in those scientific fields. A large fraction of participants from both sides were early career researchers including advanced level graduate students, postdoctoral research associates, and assistant/associate professors within 10 years of obtaining their Ph.D. The participants included a large fraction of female and minority scientists. The workshop objective was achieved by including the following inter-related objectives: (1) Establishing new multidisciplinary international collaborations between data science, mathematics, and sciences that generate big data and require advanced methods; (2) Reinforcing collaboration mechanisms between the NSF and Serbia’s Ministry of Education, Science and Technological Development and organize joint research projects; and (3) Widening the impact of the workshop, by involving researchers and stakeholders from the West Balkan region. The workshop consisted of four tracks, each co-chaired by 3 investigators from the US, Serbia and another West Balkan country. Tangible outcomes from the workshop include a report describing workshop activities for each of four tracks and a proposal recommending research collaboration areas of interest for all parties and determining collaboration mechanisms and programs to facilitate collaboration. 
    more » « less