Graph clustering is a fundamental problem in social network analysis, the goal of which is to group vertices of a graph into a series of densely knitted clusters with each cluster well separated from all the others. Classical graph clustering methods take advantage of the graph topology to model and quantify vertex proximity. With the proliferation of rich graph contents, such as user profiles in social networks, and gene annotations in protein interaction networks, it is essential to consider both the structure and content information of graphs for high-quality graph clustering. In this paper, we propose a graph embedding approach to clustering content-enriched graphs. The key idea is to embed each vertex of a graph into a continuous vector space where the localized structural and attributive information of vertices can be encoded in a unified, latent representation. Specifically, we quantify vertex-wise attribute proximity into edge weights, and employ truncated, attribute-aware random walks to learn the latent representations for vertices. We evaluate our attribute-aware graph embedding method in real-world attributed graphs, and the results demonstrate its effectiveness in comparison with state-of-the-art algorithms. 
                        more » 
                        « less   
                    
                            
                            Real-Time Streaming Graph Embedding Through Local Actions
                        
                    
    
            Recently, considerable research attention has been paid to graph embedding, a popular approach to construct representations of vertices in latent space. Due to the curse of dimensionality and sparsity in graphical datasets, this approach has become indispensable for machine learning tasks over large networks. The majority of the existing literature has considered this technique under the assumption that the network is static. However, networks in many applications, including social networks, collaboration networks, and recommender systems, nodes, and edges accrue to a growing network as streaming. A small number of very recent results have addressed the problem of embedding for dynamic networks. However, they either rely on knowledge of vertex attributes, su er high-time complexity or need to be re-trained without closed-form expression. Thus the approach of adapting the existing methods designed for static networks or dynamic networks to the streaming environment faces non-trivial technical challenges. These challenges motivate developing new approaches to the problems of streaming graph embedding. In this paper, we propose a new framework that is able to generate latent representations for new vertices with high e ciency and low complexity under speci ed iteration rounds. We formulate a constrained optimiza- tion problem for the modi cation of the representation resulting from a stream arrival. We show this problem has no closed-form solution and instead develop an online approximation solution. Our solution follows three steps: (1) identify vertices a ected by newly arrived ones, (2) generating latent features for new vertices, and (3) updating the latent features of the most a ected vertices. The new representations are guaranteed to be feasible in the original constrained optimization problem. Meanwhile, the solution only brings about a small change to existing representations and only slightly changes the value of the objective function. Multi-class clas- si cation and clustering on ve real-world networks demonstrate that our model can e ciently update vertex representations and simultaneously achieve comparable or even better performance compared with model retraining. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1848596
- PAR ID:
- 10109798
- Date Published:
- Journal Name:
- Companion Proceedings of the 2019 World Wide Web Conference (WWW ’19 Companion)
- Page Range / eLocation ID:
- 285 to 293
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Network embedding is an effective approach to learn the low-dimensional representations of vertices in networks, aiming to capture and preserve the structure and inherent properties of networks. The vast majority of existing network embedding methods exclusively focus on vertex proximity of networks, while ignoring the network internal community structure. However, the homophily principle indicates that vertices within the same community are more similar to each other than those from different communities, thus vertices within the same community should have similar vertex representations. Motivated by this, we propose a novel network embedding framework NECS to learn the Network Embedding with Community Structural information, which preserves the high-order proximity and incorporates the community structure in vertex representation learning. We formulate the problem into a principled optimization framework and provide an effective alternating algorithm to solve it. Extensive experimental results on several benchmark network datasets demonstrate the effectiveness of the proposed framework in various network analysis tasks including network reconstruction, link prediction and vertex classification.more » « less
- 
            This paper proposes a new distribution-free model of social networks. The definitions are motivated by one of the most universal signatures of social networks, triadic closure—the property that pairs of vertices with common neighbors tend to be adjacent. Our most basic definition is that of a c-closed graph, where for every pair of vertices u, v with at least c common neighbors, u and v are adjacent. We study the classic problem of enumerating all maximal cliques, an important task in social network analysis. We prove that this problem is fixed-parameter tractable with respect to c on c-closed graphs. Our results carry over to weakly c-closed graphs, which only require a vertex deletion ordering that avoids pairs of non-adjacent vertices with c common neighbors. Numerical experiments show that well-studied social networks with thousands of vertices tend to be weakly c-closed for modest values of c.more » « less
- 
            We study the classical evaluation problem for regular path queries: Given an edge-labeled graph and a regular path query, compute the set of pairs of vertices that are connected by paths that match the query. The Product Graph (PG) is the established evaluation approach for regular path queries. PG first constructs the product automaton of the data graph and the query and then uses breadth-first search to find the accepting states reachable from each initial state in the product automaton. Its data complexity is O(|V|⋅|E|), where V and E are the sets of vertices and respectively edges in the data graph. This complexity cannot be improved by combinatorial algorithms. In this paper, we introduce OSPG, an output-sensitive refinement of PG, whose data complexity is O(|E|3/2+ min(OUT⋅√|E|, |V|⋅|E|)), where OUT is the number of distinct vertex pairs in the query output. OSPG's complexity is at most that of PG and can be asymptotically smaller for small output and sparse input. The improvement of OSPG over PG is due to the unnecessary time wasted by PG in the breadth-first search phase, in case a few output pairs are eventually discovered. For queries without Kleene star, the complexity of OSPG can be further improved to O(|E| + |E|⋅√OUT).more » « less
- 
            The Random Dot Product Graph (RDPG) is a popular generative graph model for relational data. RDPGs postulate there exist latent positions for each node, and specifies the edge formation probabilities via the inner product of the corresponding latent vectors. The embedding task of estimating these latent positions from observed graphs is usually posed as a non-convex matrix factorization problem. The workhorse Adjacency Spectral Embedding offers an approximate solution obtained via the eigendecomposition of the adjacency matrix, which enjoys solid statistical guarantees but can be computationally intensive and is formally solving a surrogate problem. In this paper, we bring to bear recent non-convex optimization advances and demonstrate their impact to RDPG inference. We develop first-order gradient descent methods to better solve the original optimization problem, and to accommodate broader network embedding applications in an organic way. The effectiveness of the resulting graph representation learning framework is demonstrated on both synthetic and real data. We show the algorithms are scalable, robust to missing network data, and can track the latent positions over time when the graphs are acquired in a streaming fashion.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    